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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally consistent 

and structured as per the university‘s syllabi. It is a humble attempt to give 

glimpses of the various approaches and dimensions to the topic of study and 

to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and relevant 

examples. It introduces you to the insights of subject concepts and theories 

and presents them in a way that is easy to understand and comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added that 

despite enormous efforts and coordination, there is every possibility for 

some omission or inadequacy in few areas or topics, which would definitely 

be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly enrich 

your learning and help you to advance in your career and future endeavours. 
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BLOCK- 1 DISCRETE MATHEMATICS 
 

Discrete mathematics is the study of mathematical structures that are 

countable or otherwise distinct and separable. Examples of structures that 

are discrete are combinations, graphs, and logical statements. Discrete 

structures can be finite or infinite. Discrete mathematics is in contrast 

to continuous mathematics, which deals with structures which can range in 

value over the real numbers, or have some non-separable quality. 

 

Discrete structures can be counted, arranged, placed into sets, and put into 

ratios with one another. Although discrete mathematics is a wide and varied 

field, there are certain rules that carry over into many topics. The concept 

of independent events and the rules of product, sum, and PIE are shared 

among combinatorics, set theory, and probability. 

 

Discrete mathematics concerns itself mainly with finite collections of 

discrete objects. With the growth of digital devices, especially computers, 

discrete mathematics has become more and more important. 
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UNIT 1: SET THEORY 
 

STRUCTURE 

1.0 Objective 

1.1 Set- Concept 

1.2 Operations of Set 

1.3 Representation using Venn Diagram 

1.4 Types of Set 

1.4.1Cardinality of a Set  

1.4.2 Infinite Set  

1.4.3 Power Sets 

1.4.4 Product of a Set 

1.4.5 Covering and Partition of a Set 

1.5 Let‘s sum up 

1.6 Keywords 

1.7 Question for review 

1.8 Suggested Readings 

1.9  Answer to check your progress 

 

1.0 OBJECTIVES 
 

 What is a Set? 

 What are the different ways to represent the Sets? 

 What are the different types of Sets? 

 Operation on Sets 

 Representation of Sets using Venn Diagram 

 

1.1 WHAT IS A SET? 
 

SET: It is a collection of things. 

Things like what we carry in our school/college bag as books, pen, and 

geometry set, Tiffin, Water bottle, napkin, etc.When we write these things in 



Notes 

7 

curly bracket like below, it represent the Set& Setis always denoted by 

Capital Letters like A, B, C, etc. 

S = {Books, pen, geometry set, tiffin, water bottle, napkin} 

Example: Set of Whole numbers: - W = {0, 1, 2, 3…} 

    Set of Alphabets: - A = {a, b, c… z} 

 

Each member like in above example i.e. 0,1, 2 or a, b c, are known as 

elements of the Set& is represented with lowercase letters it is denoted by 

‗∈‘.  

So a ∈A – a is an element of A  

a ∉W  - a is not an element of W 

 

Five ways to describe set: 

1. Describing the properties of the members of the set 

2. Describing by listing its elements 

3. Describing by its characteristics function 

a. µA(x) = 1 if x∈  A 

b. µA(x) = 0 if x∉ A 

4. Describing  by recursive formula 

5. Describe by an operation(such as union, intersection, complement, 

etc.) 

 

Example: Describe the set containing natural numbers up to 5 

 Let N denote the set then we can describe N in following ways 

1. N= {x | x is natural number less than or equal to 5} 

2. N ={1,2,3,4,5} 

3.       {
                 
                        

 

4.                                    

5. This type will be discussed ahead in the section ‗Operation on 

Set‘. 

 

CONCEPTS RELATED TO SETS: 
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1. Subset: Let A and B be two sets such that 

A is a subset of B and it is represented as ‘A ⊆ B’ if every 

element of A is an element of B 

A is a proper subset of B and it is represented as ‘A ⊂ B’ if A is a 

subset of B & atleast one element of B which is not there in A. 

 

Properties related to Subset: 

1. A⊆A 

2. If A⊆ B & B⊆ C, then A⊆ C 

3. If A⊂B & B⊂C then A⊂ C 

4. If A⊆ B&A⊈C, then B⊈ C where⊈ means is not contained 

in. 

 

2. Equal Sets: Two sets are equal when  A ⊆ B & B ⊆A that is A=B 

 

3. Empty Set or Null Set: A set containing no element & denoted by∅. 

The empty set is a subset of every set. 

 

4. Singleton : A set containing one element 

 

5. Universal Set: A set that contains everything 

 

Check Your Progress 1 

1. Define Set and explain different ways to describe the sets. 

_______________________________________________ 

_______________________________________________ 

_______________________________________________ 

 

2. Explain the following concepts with examples 

a. Equal Sets 

b. Universal Set 

_______________________________________________ 

_______________________________________________ 
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       ______________________________________________ 

 

1.2 OPERATION OF SET 
 

1. Complement :  Suppose U is the universal set & A be any subset of 

U, so A (absolute complement of A)is {x | x ∉ A} or {x| x∉U and x 

∈ A} 

A & B are two sets then relative complement of A with respect to B 

is    

B – A ={x | x ∈B and x ∉A} 

From above explanation we can drive the following  

a. The complement of Universal Set U is    = ∅ 

b. The complement of Empty Set ∅ is ∅ = U 

 

Example: Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 2, 3, 4} and B = {2, 

4, 6, 8}. 

(i) Find A' 

(ii) Find B' 

Solution:  

(i) A' = U - A 

            = {1, 2, 3, 4, 5, 6, 7, 8, 9} - {1, 2, 3, 4} 

            = {5, 6, 7, 8, 9} 

 

(ii) B' = U - B 

            = {1, 2, 3, 4, 5, 6, 7, 8, 9} - {2, 4, 6, 8} 

            = {1, 3, 5, 7, 9} 

 

2. Union of Sets: It is denoted by ∪implies that it contain all the 

elements of respective set considered in Union. 

 

Let A & B be two sets then there union is represented as  

 
A ∪ B = {x | x ∈ A or x ∈ B or both} 
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3. Intersection of two sets: -It is denoted by ∩implies that it contain all 

the common elements of respective set considered in intersection. 

Let A & B be two sets then there union is represented as  

 

 

 

Properties related to Union & Intersection of two sets: 

 

 UNION INTERSECTION 

Idempotent A∪  A = A A ∩ B 

 

 

Commutative A ∪ B = B ∪ A A ∩ B = B ∩ A 

 

 

Associative A ∪ (B ∪ C) = (A ∪  

B) ∪  C 

A ∩(B ∩ C ) = (A ∩  B) 

∩C 

 

 

4. Symmetrical Difference: When the elements of the set belong to 

either one set or other set but not both which are considered for the 

operation. It is denoted by ∆. 

 

Let A & B be the two sets so the symmetrical difference of both sets 

is 

 

A ∩ B = {x | x ∈ A or x ∈ B} 
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5. Disjoint Set: They does not have common elements & represented 

as A ∩ B = ∅ 

 

Let us explore few theorems on the basis of above operations 

Theorem 1: Distributive Law 

Let A, B & C be three sets then, 

 

 

 

 

 

 

Example: Let us explain the  above properties with the help of example 

Let A = {1, 2, 3, 4}, B = {3,4,5,6}, C = {6,7,8} and Universal Set = U = 

{1,2,3,4,5,6,7,8,9,10} 

 

1. Commutative Law: A ∩ B = B ∩ A 

A ∩ B = {1, 2, 3, 4} ∩ {3,4,5,6} 

 = {3, 4} 

  A ∩ B = B ∩ A 

 

2. Associative Law: (A ∩ B) ∩ C = A ∩ (B ∩ C) 

A ∆ B = {x | x ∈ A or x ∈ B, but not both} 

C ∩ (A∪B) = (C ∩ A) ∪ (C ∩ A) 

C ∪ (A∩B) = (C ∪ A) ∪ (C∪A) 
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A ∩ B = {3, 4} 

(A ∩ B) ∩ C = {3, 4} ∩ {6,7,8} = {} = ∅ 

B ∩ C = {3, 4, 5, 6} ∩ {6,7,8} = {6} 

A ∩ (B ∩ C) = {1, 2, 3, 4} ∩ {6} = {} = ∅ 

 (A ∩ B) ∩ C = A ∩ (B ∩ C) 

 

3.Law of ∅ and U:  ∅∩ A =∅  , U ∩ A = A  

In intersection, we have all common elements 

Since ∅ has no elements , there will be no common element between ∅ and 

A. Therefore, intersection of ∅ and A will be ∅ 

∅ ∩ A = {} ∩ {1, 2, 3, 4}  

= {} 

U ∩ A = A 

Since U has all the elements, the common elements between U and A will be 

all the elements of set A 

Therefore, intersection of U and A will be A 

U ∩ A = {1, 2, 3, 4, 5, 6, 7, 8, 9,10} ∩ {1, 2, 3, 4} 

=  {1, 2, 3, 4} = A  

  U ∩ A = A 

 

4.Idempotent Law : A ∩ A= A 

A ∩ A= {1, 2, 3, 4} ∩ {1, 2, 3, 4} 

= {1, 2, 3, 4} = A 
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   ∩       

 

5.  Distributive Law i. e. ∩ distributes over ∪ : A ∩ (B ∪ C) = (A ∩ B) ∪ (A 

∩ C)  

B ∪ C = {3,4,5,6} ∪ {6,7,8} = {3,4,5,6, 7, 8} 

A ∩ (B ∪ C) = {1, 2, 3, 4} ∩ {3,4,5,6, 7, 8} 

= {3, 4} 

A ∩ B = {1, 2, 3, 4} ∩ {3,4,5,6} = {3, 4} 

A ∩ C = {1, 2, 3, 4} ∩ {6,7,8} = {}= ∅ 

(A ∩ B) ∪ (A ∩ C) = {3, 4} ∪ ∅  = {3, 4} 

 

  A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 

 

Distributive Law i. e. ∪ distributes over ∩ : A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ 

C)  

(B ∩ C) = {3, 4, 5, 6} ∩ {6,7,8} = {6} 

A ∪ (B ∩ C) = {1, 2, 3, 4} ∪ {6} = {1, 2, 3, 4, 6} 

 

A ∪ B = {1, 2, 3, 4} ∪ {3, 4, 5, 6} = {1, 2, 3,4, 5, 6 } 

A ∪ C = {1, 2, 3, 4} ∪ {6,7,8}= {1, 2, 3, 4, 6, 7, 8} 

(A ∪ B) ∩ (A ∪ C) = {1, 2, 3, 4, 5, 6 } ∩ {1, 2, 3, 4, 6, 7, 8} 

= {1, 2, 3, 4, 6} 

  A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 
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Theorem 2:DeMorgan’s Law 

Let A & B be the two sets then  

   ∪     ∩   

   ∩     ∪   

 

Proof:  DeMorgan’s Law 1:  

Let P = (A U B)' and Q = A' ∩ B' 

Let x be an arbitrary element of P then x ∈ P ⇒ x ∈ (A U B)' 

⇒ x ∉ (A U B) 

⇒ x ∉ A and x ∉ B 

⇒ x ∈ A' and x ∈ B' 

⇒ x ∈ A' ∩ B' 

⇒ x ∈ Q 

Therefore, P ⊂ Q …………….. (i) 

Again, let y be an arbitrary element of Q then y ∈ Q ⇒ y ∈ A' ∩ B' 

⇒ y ∈ A' and y ∈ B' 

⇒ y ∉ A and y ∉ B 

⇒ y ∉ (A U B) 

⇒ y ∈ (A U B)' 

⇒ y ∈ P 

Therefore, Q ⊂ P …………….. (ii) 
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Now combine (i) and (ii) we get; P = Q i.e. (A U B)' = A' ∩ B'  

 

Proof of De Morgan’s law 2: 

(A ∩ B)' = A' U B' 

Let M = (A ∩ B)' and N = A' U B' 

Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)' 

⇒ x ∉ (A ∩ B) 

⇒ x ∉ A or x ∉ B 

⇒ x ∈ A' or x ∈ B' 

⇒ x ∈ A' U B' 

⇒ x ∈ N 

Therefore, M ⊂ N …………….. (i) 

 

Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B' 

⇒ y ∈ A' or y ∈ B' 

⇒ y ∉ A or y ∉ B 

⇒ y ∉ (A ∩ B) 

⇒ y ∈ (A ∩ B)' 

⇒ y ∈ M 

Therefore, N ⊂ M …………….. (ii) 

Now combine (i) and (ii) we get; M = N i.e. (A ∩ B)' = A' U B' 

Check Your Progress 2 
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1. Prove DeMorgan‘s law with the help of example 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2. Explain the concept of symmetrical difference with the help of example 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

3. Define     a. Complement of Set 

b. Disjoint Set 

 

_______________________________________________ 

 

_______________________________________________ 

  

_______________________________________________ 

 

1.3 REPRESENTATION USING VENN 

DIAGRAM: 
 

Venn diagram: Represents information that is easy in understanding 

1. Set B is a proper subset of A 

 

 

 

 

A 
B 
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2. The absolute complement of set A 

 

 

 

3. The relative complement of set B with respect to set A 

 

 

 

4. The Union of sets A and B 

 

 

 

5. The intersection of sets A and B 

 

 

 

6. The symmetrical difference of sets A and B 

 

 

 

Solved Example: 

How to represent a set using Venn diagrams in different situations? 

A 

A B 

B A 

A B 

B A 
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1. ξ is a universal set and A is a subset of the universal set.  

ξ = {1, 2, 3, 4}  

A = {2, 3}  

 

 

 

 

 

2. For example;  

Let ξ = {1, 2, 3, 4, 5, 6, 7} 

 

A = {2, 4, 6, 5} and B = {1, 2, 3, 5} 

 

Then A ∩ B = {2, 5} 

1.4 TYPES OF SET 

1.4.1 Cardinality Of A Set: 

Let ‘S’ be a set. If there are exactly n distinct elements in S, where n 

is a nonnegative integer, we say S is a finite set and that n is the cardinality 

of S. The cardinality of S is denoted by | S |. 
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Examples:  

1. V = {1,2,3,4,5} 

|V| = 5 

2. A = {1,2,3,…, 20} 

|A| = 20 

3. |∅| = 0 

 

Note:  

(i) Cardinal number of an infinite set is not defined. 

(ii) Cardinal number of empty set is 0 because it has no element. 

 

Example: 

1. Write the cardinal number of each of the following sets:  

(i) X = {letters in the word MALAYALAM} 

(ii) Y = {5, 6, 6, 7, 11, 6, 13, 11, 8} 

(iii) Z = {natural numbers between 20 and 50, which are divisible by 7} 

 

Solution:  

(i) Given, X = {letters in the word MALAYALAM} 

Then, X = {M, A, L, Y} 

Therefore, cardinal number of set X = 4, i.e., n(X) = 4 

 

(ii) Given, Y = {5, 6, 6, 7, 11, 6, 13, 11, 8} 

Then, Y = {5, 6, 7, 11, 13, 8} 

Therefore, cardinal number of set Y = 6, i.e., n(Y) = 6 

 

(iii) Given, Z = {natural numbers between 20 and 50, which are divisible 

by 7} 

Then, Z = {21, 28, 35, 42, 49} 

Therefore, cardinal number of set Z = 5, i.e., n(Z) = 5 

 

1.4.2 Infinite Set: 
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 A set is infinite if it is not finite. 

 Examples:  

1. The set of natural numbers is an infinite set.  

2.  N = {1, 2, 3 ...}  

3. The set of reals is an infinite set. 

 

1.4.3 Power Set: 

Given a set S, the power set of S is the set of all subsets of S. The 

power set is denoted by P(S). 

Examples:  

1. Assume an empty set ∅. What is the power set of ∅?  

P (∅) = {∅}  

 What is the cardinality of P (∅)?  

| P (∅) | = 1.  

2. Assume set {1}  then  P ( {1} ) = { ∅, {1} }  

 |P ({1})| = 2 

3. Assume {1,2,} 

 P({1,2,3}) = {, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2, 3}} 

 |P({1,2,3} | = 8  

 

Computer Representation of Subsets of a Small Set S: 

 

3- bit Binary Numbers S = {a, b, c} 

 

a B c Elements of P(S) 

0 0 0 ∅ 

0 0 1 {c} 

0 1 0 {b} 
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0 1 1 {b, c} 

1 0 0 {a} 

1 0 1 {a, c} 

1 1 0 {a, b} 

1 1 1 {a, b, c} 

 

 

4.  If S is a set with |S| = n then | P(S) | =    

 

1.4.4 Product Of A Sets: 

The Cartesian product of two sets  A and B (also called the product set, set 

direct product, or cross product) is defined to be the set of all points (a, b) 

where  a ∈ A and b ∈ B. It is denoted as A   B and is called the Cartesian 

product since it originated in Descartes' formulation of analytic geometry. In 

the Cartesian view, points in the plane are specified by their vertical and 

horizontal coordinates, with points on a line being specified by just one 

coordinate.  

Examples:  

 S = {1, 2} and T = {a, b, c}  

 S   T = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}  

 T x S = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}  

 Note: S   T  T   S. 

 

Cardinality of the Cartesian product  

|S   T| = |S|   |T|. 

Example: Let A= {John, Peter, Mike} and B = {Jane, Ann, Laura}  

 A x B= {(John, Jane), (John, Ann), (John, Laura), (Peter, Jane), (Peter, 

Ann), (Peter, Laura), (Mike, Jane), (Mike, Ann), (Mike, Laura)}  

 |A x B| = 9  



Notes 

22 

Also, |A|=3, |B|=3 ⟶ |A| |B|= 9 

 

Example: If A = {7, 8} and B = {2, 4, 6}, find A × B.  

 

Solution: 

 

A × B = {(7, 2); (7, 4); (7, 6); (8, 2); (8, 4); (8, 6)}  

 

The 6 ordered pairs thus formed can represent the position of points in a 

plane, if a and B are subsets of a set of real numbers.   

 

Example:  If A and B are two sets, and A × B consists of 6 elements: If 

three elements of A × Bare (2, 5) (3, 7) (4, 7) find A × B. 

 

Solution: 

 

Since, (2, 5) (3, 7) and (4, 7) are elements of A × B. 

 

So, we can say that 2, 3, 4 are the elements of A and 5, 7 are the elements of 

B. 

 

So, A = {2, 3, 4} and B = {5, 7} 

 

Now, A × B = {(2, 5); (2, 7); (3, 5); (3, 7); (4, 5); (4, 7)} 

 

Thus, A × B contain six ordered pairs. 

1.4.5 Partition Of A Set: 

A partition of a set X is a set of nonempty subsets of X such that every 

element x in X is in exactly one of these subsets (i.e., X is a disjoint of the 

subsets). 
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Equivalently, a family of sets P is a partition of X if and only if all of the 

following conditions hold:  

1. P does not contain the empty set. 

2. The union of the sets in P is equal to X. (The sets in P are said 

to cover X.) 

3. The intersection of any two distinct sets in P is empty. (We say the 

elements of P are pairwise disjoint.) 

In mathematical notation, these conditions can be represented as 

1. ∅∉ P 

2. ⋃      ∈   

3. If A, B ∈ P and A ≠ B then A ∩ B = ∅ 

where ∅ is the empty set. 

The sets in P are called the blocks, parts or cells of the partition.  

The rank of P is |X| − |P|, if X is finite. 

 

1.4.6 Covering And Partition Of A Set: 

Let ‘S’ be a given set and A = {A1, A2, …, Am}where Ai, i = 1, 2, …, m, is a 

subset of S and ⋃      
   . Then the set A is called a covering of S. If in 

addition, the elements of A, which are subsets of S, are mutually disjoint, 

then A is called a partition of S and the sets A1, A2, …, Am are called the 

blocks of the partition.  

 

Example: Let S = {a, b, c} & consider the following collection of subset of 

S 

A= {{a, b},{b, c}}  B = {{a}, {a, c}}  C = {{a},{b, c}}  D = {{a, b, c}}   

E = {{a}, {b}, {c}}F = {{a}, {a, b}, {a, c}} 

The sets A and F are covering of S while C, D, E are partition of S. Of 

course every partition is also a covering. The set B is neither a covering nor 

http://en.wikipedia.org/wiki/Union_(set_theory)
http://en.wikipedia.org/wiki/Intersection_(set_theory)
http://en.wikipedia.org/wiki/Pairwise_disjoint
http://en.wikipedia.org/wiki/Empty_set
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a partition of S. The partition D has one block while E has three blocks. In 

fact, for any finite set, the small partition consists of the set itself as a block 

while the largest partition consists of blocks containing only single element. 

Two partitions are said to be equal as a sets. For a finite set, every partition 

is a finite partition i.e., every partition contains only a finite number of 

blocks. 

 

Check Your Progress 3 

1. Explain the concept of Cardinality of Set 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

2. What do you understand by Partition of Set? Elaborate it. 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

1.5 LET’S SUM UP 

Set Theory is an ideal mathematical tool to understand and solve many 

problems and its operations and Venn diagrams are very useful to convert 

the difficult problems into simpler one to figure out the solution. 

 

1.6 KEYWORDS 
 

1. Set - A set is a collection of objects. 

2. Element - An element or member of a set is an object that belongs to the 

set 
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3. Cardinality - The cardinality of a set is the number of distinct elements 

in the set 

4. Universe of Discourse – the set containing all elements under discussion 

for a particular problem 

 

1.7 QUESTIONS FOR REVIEW 

 

1. If A = {1, 2, 3, 4}, B = {x  : x is a positive integer and x
2
 < 18}.Is A= B? 

2. Let A = {1, 2, 3}, B = {2, 3, 4, 5}. Find A Δ B. 

3. A software company requires 60 engineers to perform Java programming 

jobs and 35 engineers to perform c + + programming jobs. Out of this 

requirement, 15 are expected to perform both types of jobs. How many 

engineers have to be appointed for the purpose? 

4. If A = { 1, 3, 5} and B = {2, 3}, then 

Find: (i) A × B (ii) B × A (iii) A × A (iv) (B × B) 

5. Each student in a class of 40 plays at least one indoor game chess, carom 

and scrabble. 18 play chess, 20 play scrabble and 27 play carom. 7 play 

chess and scrabble, 12 play scrabble and carom and 4 play chess, carom and 

scrabble. Find the number of students who play (i) chess and carrom. (ii) 

chess, carom but not scrabble 
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1. Kenneth H. Rosen - Discrete Mathematics and Its Applications, Tata 

Mc-Graw-Hill, 7
th

 Edition, 2012. 

2. Bernard Kolman, Robert C. Busby, Sharon Cutler Ross-Discrete 

Mathematical Structures-Prentice Hall, 3rd Edition, 1996. 
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Addison Wesley, 5
th

 Edition, 2004. 

4. C. L. Liu – Elements of Discrete Mathematics, McGraw-Hill, 1986.  

5. F. Harary – Graph Theory, Addition Wesley Reading Mass, 1969.  

6. N. Deo – Graph Theory With Applications to Engineering and Computer 

Science, Prentice Hall of India, 1987.  

7. K. R. Parthasarathy – Basic Graph Theory, Tata McGraw-Hill, New 

Delhi, 1994.  

8. G. Chartand and L. Lesniak – Graphs and Diagraphs, wadsworth and 

Brooks, 2nd Ed.,  

9. Clark and D. A. Holton – A First Look at Graph Theory, Allied 

publishers.  

10. D. B. West – Introduction to Graph Theory, Pearson Education 

Inc.,2001, 2nd Ed.,  

11. J. A. Bondy and U. S. R. Murthy – Graph Theory with applications, 

Elsevier, 1976 

12. J. P. Tremblay & R. Manohar, Discrete Mathematical Structures with 

Applications to Computer   Science, McGraw Hill Book Co. 1997 

13. S. Witala, Discrete Mathematics - A Unified Approach, McGraw Hill 

Book Co 

1.9 ANSWER TO CHECK YOUR PROGRESS 
 

1. [HINT: Provide definition and different representation- 1.2] 

2. [HINT: Provide definition – 1.2] 

3. [HINT: Provide proof and example- 1.3.2] 

4. [HINT: Provide the definition and example 1.3.1] 

5. [HINT: Provide definition 1.3] 

6. [HINT: Provide explanation – 1.5.1] 

7. [HINT: Provide explanation 1.5.5] 
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UNIT 2: RELATIONS AND FUNCTIONS 
 

STRUCTURE 

 

2.0 Objective 

2.1 Relations 

 2.1.1equivalece 

2.2 Representation of Relations  

2.3 Functions 

2.3.1 One-to-One Function  

2.3.2 Onto Function  

2.3.3Inverse Function  

2.3.4 Composition of Function 

2.3.5 Hash Function 

2.3.6 Characteristics Function 

2.4 Let‘s sum  up 

2.5 Keywords 

2.6 Questions for review 

2.7 Suggested Readings 

2.8 Answer to check your progress 

 

2.0 OBJECTIVES 
 Relations and Equivalence Relation 

 Functions and its types 

 

2.1 RELATIONS 
 

First we will understand the Cartesian product which is a set of ordered 

pairs (two objects in specified order). Let A & B be the two sets and a ϵ A & 

b ϵ B. Thus, the ordered pair is (a, b). We can define the Cartesian Product 

of Set A & B 

A  B = {(a, b) | a  A and b   B} 
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In mathematics there are various relations such as ―is less than‖, ―is parallel 

to‖, ―is a power of ‖. 

A relation from a set A to a set B is any subset of A B (Cartesian 

Product of Set A & B) ,  is represented by ‗R‘ which indicates relation such 

that  xRy  makes sense for  x   Aand  y   B. We can represent R by the set 

of ordered pairs (x, y) for which the relation holds, that is {(x, y) | xRy}. 

 

Example: If A= {1, 2, 3, 4} then the relation normally written x < y would 

be:  

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}  

 

Domain of R:The domain of R is the set of first coordinates in R & denoted 

by dom R 

From above example  

 dom R = {1,1,1,2,2,3}  or  { x |x ∈ A  and (x, y) ∈ R for some y ϵ B} 

 

Range of R:The range of R is the set of second coordinates in R & denoted 

by ran R 

From above example  

 Ran R ={2, 3, 4, 3, 4, 4} or {y | y   B and (x, y)   R for some x   A} 

 

2.1.1 Equivalence Relation: 

The three most important properties for a relation R on a set A are the 

reflexive, symmetric and transitive properties. 

R is reflexive if  xRx  for all  x.                      

R is symmetric if  xRy yRx  for all  x, y.                   

R is transitive if  xRy and yRz  xRz  for all  x, y, z. 

 

Example: 

1. Let A = {1, 2, 3, 4} & let R= {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} 
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Not Reflexive: Since (1, 1) ∉ R 

 

Not Symmetric:  (2, 3) ϵ R but (3, 2) ∉ R 

 

Not Transitive: (2, 3) ϵ R and (3,1)   R but (2, 1) ∉ R 

 

2. x Ry    |x -  y| < 3  

Reflexive: Since for all x, |x – x| = 0 which is less than 3.  

Symmetric: Since |y – x| = |x – y|.  

Not Transitive: For example 1R3 and 3R5 but it is not true that 1R5. 

 

2.1.2 Anti-symmetric Relation:  

If following below condition is satisfied  

 (a, b)  R and (b, a)   R implies a= b 

Refer the 1
st
 example above a relation R on set A is not anti-symmetric as 

(1, 3)  R and (3, 1)   R and 1  3 

 

2.1.3 Congruence Modulo: 

Suppose A be the set of integers &n be fixed positive integer. So 

relation Rn on A by aRnb if a – b is an integral multiple of n. So a – b =mn 

where m is some integer. 

Thus a is congruent to b modulo n& is represented as a ≡ b mod n 

Let‘s check the equivalence relation 

Reflexive: a – a = 0.n so that a ≡ a mod n for each integer n 

Symmetric: a ≡ b mod n then a – b = mn where m is some integer & 

b – a = (–m) n so that we have b ≡ a mod n 

Transitive: If a ≡ b mod n & b ≡ c mod n then a – b = mn & b – c = 

kn where m&k are integers. So after adding these two equations we 

have  a – c = (m + k) n & we can conclude that a ≡ c mod n. 
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2.1.4 Congruence Class: 

 If x is a given integer then [x] denote the set of all integers y such that x ≡ y 

mod n then [x] is known as Equivalence /Congruence Class containing x 

integer &xis called as representative of the congruence class.  

[x] = {x + mn | m is any integer} 

 

2.1.5 Composition of Relation:  

 Let R be the relation from A to B & S a relation from B to C. 

 The composition of R and S is denoted by R   S / RS is the relation from 

A to C which is given by a RS c if there is an element b   B such that a 

R b and b S c 

 Set B serves as an intermediary for establishing a correspondence 

between A & C. 

 

Example: 

1. If A ={1, 2, 3},B ={5,6} and C ={a, b, c} 

Let R = {(1,5), (1,6), (2,6)} be a relation from A to B & 

Let S = {(5, a), (6, c)} be a relation from B to C. 

Then RS= {(1,a), (1,c), (2, c)} is a relation from A to C 

 

2. If R (x)= x + 1 and S (y) = y
2
  are the functions defined on the set of 

real numbers then 

 (R.S) (x) = S (R (x)) = (x + 1)
2
   and 

(S.R) (x) = R (S(x)) = x
2
+ 1 

 

Example. In the given ordered pair (4, 6); (8, 4); (4, 4); (9, 11); (6, 3); (3, 0); 

(2, 3) find the following relations. Also, find the domain and range. 

 

(a) Is two less than 
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(b) Is less than 

(c) Is greater than 

(d) Is equal to 

Solution: 

 

(a) R₁ is the set of all ordered pairs whose 1ˢᵗ component is two less than the 

2ⁿᵈ component. 

Therefore, R₁ = {(4, 6); (9, 11)} 

Also, Domain (R₁) = Set of all first components of R₁ = {4, 9} and 

Range (R₂) = Set of all second components of R₂ = {6, 11} 

 

(b) R₂ is the set of all ordered pairs whose 1ˢᵗ component is less than the 

second component. 

Therefore, R₂ = {(4, 6); (9, 11); (2, 3)}. 

Also, Domain (R₂) = {4, 9, 2} and Range (R₂) = {6, 11, 3} 

(c) R₃ is the set of all ordered pairs whose 1ˢᵗ component is greater than 

the second component. 

Therefore, R₃ = {(8, 4); (6, 3); (3, 0)} 

Also, Domain (R₃) = {8, 6, 3} and Range (R₃) = {4, 3, 0} 

(d) R₄ is the set of all ordered pairs whose 1ˢᵗ component is equal to the 

second component. 

Therefore, R₄ = {(3, 3)} 

Also, Domain (R) = {3} and Range (R) = {3} 

 

Example:  Determine the domain and range of the relation R defined by 
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R = {x + 2, x + 3} : x ∈ {0, 1, 2, 3, 4, 5} 

 

Solution: 

 

Since, x = {0, 1, 2, 3, 4, 5} 

 

Therefore, 

x = 0 ⇒ x + 2 = 0 + 2 = 2 and x + 3 = 0 + 3 = 3 

 

      x = 1 ⇒ x + 2 = 1 + 2 = 3 and x + 3 = 1 + 3 = 4 

 

      x = 2 ⇒ x + 2 = 2 + 2 = 4 and x + 3 = 2 + 3 = 5 

x = 3 ⇒ x + 2 = 3 + 2 = 5 and x + 3 = 3 + 3 = 6 

 

      x = 4 ⇒ x + 2 = 4 + 2 = 6 and x + 3 = 4 + 3 = 7 

 

      x = 5 ⇒ x + 2 = 5 + 2 = 7 and x + 3 = 5 + 3 = 8 

 

Hence, R = {(2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)} 

Therefore, Domain of R = {a : (a, b) ∈R} = Set of first components of all 

ordered pair belonging to R. 

Therefore, Domain of R = {2, 3, 4, 5, 6, 7} 

 

Range of R = {b : (a, b) ∈ R} = Set of second components of all ordered 

pairs belonging to R. 

Therefore, Range of R = {3, 4, 5, 6, 7, 8} 

CHECK YOUR PROGRESS 1 

1. Explain the  concept of Equivalence Relations 

_______________________________________________ 
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_______________________________________________ 

 

_______________________________________________ 

 

2. Define 

a. Anti-Symmetry Relations 

b. Congruence Class 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2.2 REPRESENTATION OF RELATION IN 

MATH: 
 

The relation in math from set A to set B is expressed in different forms.  

      (i) Roster form  

  (ii) Set builder form  

  (iii) Arrow diagram 

2.3.1 Roaster Form: 

o In this, the relation (R) from set A to B is represented as a set of 

ordered pairs. 

o In each ordered pair 1st component is from A; 2nd component is from 

B. 

o Keep in mind the relation we are dealing with. (>, < etc.) 

For Example: 

1. If A = {p, q, r} B = {3, 4, 5} 

then R = {(p, 3), (q, 4), (r, 5)} 



Notes 

34 

Hence, R ⊆ A × B 

2. Given A = {3, 4, 7, 10} B = {5, 2, 8, 1} then the relation R from A to B is 

defined as ‗is less than‘ and can be represented in the roster form as R = {(3, 

5) (3, 8) (4, 5), (4, 8), (7, 8)} 

Here, 1ˢᵗ component < 2ⁿᵈ component. 

 

In roster form, the relation is represented by the set of all ordered pairs 

belonging to R. 

 

If A = {-1, 1, 2} and B = {1, 4, 9, 10} 

if a R b means a² = b 

then, R (in roster form) = {(-1, 1), (1, 1), (2, 4) 

2.3.2 Set Builder Form: 

In this form, the relation R from set A to set B is represented as R = {(a, b): 

a ∈ A, b ∈ B, a...b}, the blank space is replaced by the rule which associates 

a and b. 

 

For Example: 

 

Let A = {2, 4, 5, 6, 8} and B = {4, 6, 8, 9} 

Let R = {(2, 4), (4, 6), (6, 8), (8, 10) then R in the set builder form, it can be 

written as 

R = {a, b} : a ∈ A, b ∈ B, a is 2 less than b} 

 

2.3.3 Arrow Diagram: 

Steps: 
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 Draw two circles representing Set A and Set B. 

 Write their elements in the corresponding sets, i.e., elements of 

Set A in circle A and elements of Set B in circle B. 

 Draw arrows from A to B which satisfy the relation and indicate 

the ordered pairs. 

Example: If A = {3, 4, 5} B = {2, 4, 6, 9, 15, 16, 25}, then relation R from 

A to B is defined as ‗is a positive square root of‘ and can be represented by 

the arrow diagram as shown. 

Here R = {(3, 9); (4, 16); (5, 25)} 

 

 

 

 

 

 

In this form, the relation R from set A to set B is represented by drawing 

arrows from 1ˢᵗ component to 2ⁿᵈ components of all ordered pairs which 

belong to R. 

Example: If A = {2, 3, 4, 5} and B = {1, 3, 5} and R be the relation 'is less 

than' from A to B,then R = {(2, 3), (2, 5), (3, 5), (4, 5)} 

 

 

 

 

 

Example: Let A = {2, 3, 4, 5} and B = {8, 9, 10, 11}. 
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Let R be the relation ‗is factor of‘ from A to B. 

 

(a) Write R in the roster form. Also, find Domain and Range of R. 

 

(b) Draw an arrow diagram to represent the relation 

Solution:  (a) Clearly, R consists of elements (a, b) where a is a factor of b. 

 

Therefore, Relation (R) in the roster form is R = {(2, 8); (2, 10); (3, 9); (4, 

8), (5, 10)} 

 

Therefore, Domain (R) = Set of all first components of R = {2, 3, 4, 5} and 

Range (R) = Set of all second components of R = {8, 10, 9} 

b) The arrow diagram representing R is as follows 

 

 

 

 

 

 

Check Your Progress 2 

1. Explain different types of representation used for relations. Give 

examples 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2. Highlight the steps to draw the arrow diagram 
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implies 

 

_______________________________________________ 

 

_______________________________________________ 

 

2.3 FUNCTIONS 
 

A function  ‗ƒ‘  from a set  A  to a set  B  is the pair of sets  (A, B)  with a 

rule that associates with each element  ‗x -- a unique element of  B’, such 

that  x   A  and written asƒ(x).  This element is called the image of f.  We 

indicate that f is a function from A to B by writing ƒ: A B.  The set A is 

called the domain of f and    is called the codomain. The synonyms of 

―function‖ are ―mapping‖, ―transformation‖, ―correspondence‖ and operator. 

Other Way to understand ‘Function’: Let A & B be the two non-empty sets. 

Now a function ƒ: A B is a relation from A to B such that: 

 

 Dom ƒ = A, for each a ϵ A, (a, b) ∈ƒ for some b ϵ B which refers that 

ƒ is defined at each a ∈ A. 

 If (a,b) ∈ƒ and (a, c) ∈ƒ then b = c. In this, we can refer ƒ is well 

defined or single valued. Thus no element of A is related to two 

elements of B 

 If (a, b)∈ƒ then b is known as the image of a under ƒ& we can 

represent it in the following way 

b = ƒ(a) 

2.4.1 One-To-One Function: 

If a function saysƒ: A B satisfy the following condition below: 

 

 ƒ (x1) = y and ƒ (x2) = y                        x1 = x2 

 For each b ∈ ranƒ,    (b) contains only one element.  

 Let    (b) as the set of preimages of b, for each b ϵ ran ƒ, b has 

precisely one preimage 
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-1 

2.4.2 Onto Function: 

If a function says ƒ = A B satisfies the following condition below: 

 ran ƒ= B or 

    (b) is non empty for each b ϵ  B 

 For each b ϵ  B has some preimage in A 

 

2.4.3 Inverse Function: 

Let a function ƒ : A B is one-to-one and onto function, then the inverse 

relation ƒ
-1

is single valued, & thus is a function from B to A. In this case ƒ
-

1
is the inverse function of ƒ. 

Note: 

 A one to one & onto function ƒ : A B is also known as one-to-one 

correspondence between A & B 

 If a functionƒ: A B is not one-to-one then it is called as many-to-

one function. Also if ƒ not onto B then it is known as into B 

 Two functions are equal if they are equal as a set because function is 

also a set 

 

Examples: 

1. Let A = {r, s, t}, B = {1, 2, 3} and C ={r, s, t, u}. So R= {(r, 1), 

(r, 2), (t, 2)} is a relation from A to B but R is not a function 

since R (r) ={1,2} 

2. The set ƒ = {(r, 1), (s, 2),(t, 2)} is a function from A to B but ƒ is 

not one-to-one since 

ƒ
-1

(2) = {s, t}& also ƒ is not onto B as ƒ
-1

(3)= ϕ 

3. The function g = {(r, 1), (s, 2), (t, 3)} is both one-to-one & onto 

function from A to B. 

Also g
-1

   = {(1, r), (2, s), (3, t)} 

4. The function h: C  B defined as h= {(r, 1), (s, 1), (t, 2), (u, 3) 

is onto but not one-to-one function since h
-1

(1) = {r, s} 
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2.4.4 Composition Of A Function: 

Let f be a function from set A to set B and let g be a function from set B to 

set C. The composition of the functions g and f, denoted by g  f is defined by 

(g  f)(a) = g (f (a)) 

Example: 

1. Let A = {1, 2, 3} and B = {a, b, c, d}.  

 

Then g: A ⟶ A   f: A⟶B 

 1⟶3    1⟶ b 

 2⟶1    2⟶a 

 3⟶2    3⟶d 

So, the composition of function is given as f  g: A⟶B 

1⟶d 

2⟶b 

3⟶a 

2.                                      

 

Let f: R⟶R, where f(x) = 2x – 1 and         
     

 ⁄  

 

             [      ] 

  [ 
     

 ⁄ ] 

  [
   

 
]    
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2.4.5 Hash Function: 

Suppose we wish to retrieve some information stored in a table of size n 

with indexes 0, 1 . . .  n – 1. The items in the table can be very general 

things. For example, the items might be strings of letters, or they might be 

large records with many fields of information. To look up a table item we 

need a key to the information we desire. 

For example, if the table contains records of information for the 12 months 

of the year, the keys might be the three-letter abbreviations for the 12 

months. To look up the record for January, we would present the key Jan to 

a lookup program. The program uses the key to find the table entry for the 

January record of information. Then the information would be available to 

us. An easy way to look up the January record is to search the table until the 

key Jan is found. This might be OK for a small table with 12 entries. But it 

may be impossibly slow for large tables with thousands of entries. Here is 

the general problem that we want to solve. Given a key, find the table entry 

containing the key without searching. This may seem impossible at first 

glance. But let‘s consider away to use a function to map each key directly to 

its table location. 

We can define hash function is a function that maps a set S of keys toa finite 

set of table indexes, which we‘ll assume are 0, 1 ... n – 1. A table whose 

information found by a hash function called a hash table. 

For example, let S be the set of three-letter abbreviations for the months of 

the year. We might define a hash function f: S → {0, 1 ... 11} in the 

following way. 

f (XYZ) = (ord (X) + ord (Y) + ord (Z)) mod 12. 

 

Where or (X) denotes the integer value of the ASCII code for X.(The ASCII 

values for A to Z and a to z are 65 to 90 and 97 to 122, respectively.) 

For example, we‘ll compute the value for the key Jan. 
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f(JAN) = [ord(X) + ord(Y ) + ord(n)]mod 12 =(74+97+110) mod 12 = 5. 

 

2.4.6 Characteristics Function: 

Consider some universal set ‗U‘. Let A ⊆ U. The function       

                 

             ∈   

             ∈    is called the characteristic function of A. 

 

2.5 REPRESENTATION OF A FUNCTION 

BY AN ARROW DIAGRAM: 
 

In this, we represent the sets by closed figures and the elements are 

represented by points in the closed figure. 

The mapping f : A → B is represented by arrow which originates from 

elements of A and terminates at the elements of B. 

 

 

 

 

Example:  Let A = {1, 2, 3, 4} and B = {0, 3, 6, 8, 12, 15} 

 

Consider a rule f (x) = x² - 1, x∈A, then 

 

  (a) show that f is a mapping from A to B 

(b) draw the arrow diagram to represent the mapping. 

(c) represent the mapping in the roster form. 
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(d) write the domain and range of the mapping 

Solution: 

 

a)  Using f (x) = x² - 1, x ∈ A we have 

 

f(1) = 0, 

f(2) = 3, 

f(3) = 8, 

f(4) = 15 

 

We observe that every element in set A has unique image in set B. 

Therefore, f is a mapping from A to B. 

 

(b) Arrow diagram which represents the mapping is given below 

 

 

 

 

 

 

(c) Mapping can be represented in the roster form as  

f = {(1, 0); (2, 3); (3, 8); (4, 15)}  

 

(d) Domain (f) = {1, 2, 3, 4} Range (f) = {0, 3, 8, 15} 
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Example:   The 

given function is: 

 

 

 

 

a) Injective        b) Surjective      c) Many to one       d) Bijective 

Ans. a) Injective each element in X is mapped to a distinct element in Y. 

CHECK YOUR PROGRESS 3 

1. Define Inverse Function 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2. What do you understand by the Hash Function? 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2.4 LET’S SUM UP 
 

Relations may exist between objects of the same set or between objects of 

two or more sets. It helps us to establish relationship between elements of 

the set. There are many business concepts, science concepts where relations 

and functions are used to establish or verify different facts. 
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2.5 KEYWORDS 
 

1. Relation: The relation is the subset of the Cartesian product which contains 

only some of the ordered pair based on the relationships defined between the 

first and second elements. 

2. Functions: If every element of a set A is related with one and only one 

element of another set then this kind of relation qualifies as a function. 

3. Domain: is the set of all first elements of R. 

4. Range: is the set of all second elements of R. 

 

2.6 QUESTIONS FOR REVIEW 
 

1. The adjoining figure shows a relation between the sets A and B. 

 

 

 

 

Write this relation in  

• Set builder form 

 • Roster form 

  • Find the domain and range 

2.Let A = {2, 3, 4, 5} and B = {8, 9, 10, 11}. 

Let R be the relation ‗is factor of‘ from A to B. 

 

(a) Write R in the roster form. Also, find Domain and Range of R. 
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(b) Draw an arrow diagram to represent the relation 

3.Let T be a set of triangles in a plane, and define R as the set R = 

{(a, b); a, b ∈ T, a is congruent to b}. Is R is an equivalence relation? 

4.Show that the relation of congruence modulo m, defined on the set Z of 

integers by a ≡ b (mod m) is an equivalence relation. 

5. Function f is defined by f(x) = - 2 x
 2
 + 6 x – 3, find f(- 2). 

2.7 SUGGESTED READINGS 
 

 Kenneth H. Rosen - Discrete Mathematics and Its Applications, Tata 

Mc-Graw-Hill, 7
th

 Edition, 2012. 

 Bernard Kolman, Robert C. Busby, Sharon Cutler Ross-Discrete 

Mathematical Structures-Prentice Hall, 3rd Edition, 1996. 

 Grimaldi R-Discrete and Combinatorial Mathematics. 1-Pearson, 

Addison Wesley, 5
th

 Edition, 2004. 

 C. L. Liu – Elements of Discrete Mathematics, McGraw-Hill, 1986.  

 F. Harary – Graph Theory, Addition Wesley Reading Mass, 1969.  

 N. Deo – Graph Theory With Applications to Engineering and Computer 

Science, Prentice Hall of India, 1987.  

 K. R. Parthasarathy – Basic Graph Theory, Tata McGraw-Hill, New 

Delhi, 1994.  

 G. Chartand and L. Lesniak – Graphs and Diagraphs, wadsworth and 

Brooks, 2nd Ed.,  

 Clark and D. A. Holton – A First Look at Graph Theory, Allied 

publishers.  

 D. B. West – Introduction to Graph Theory, Pearson Education 

Inc.,2001, 2nd Ed.,  

 J. A. Bondy and U. S. R. Murthy – Graph Theory with applications, 

Elsevier, 1976 



Notes 

46 
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2.8 ANSWER TO CHECK YOUR PROGRESS 
 

1. [HINT: Provide the explanation 2.2.1] 

2. [HINT: Provide the definition – 2.2.2 & 2.2.4] 

3. [HINT: Provide the different types of representation -2.3] 

4. [HINT: Provide the steps – 2.3.3] 

5. [HINT: Provide definition – 2.4.3] 

6. [HINT: Provide definition – 2.4.5] 
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UNIT 3: BOOLEAN ALGEBRA 
 

STRUCTURE 

3.0 Objectives 

3. 1 Introduction 

3.2 Definition 

3.3 Boolean Homorphism And Isomorphis 

3.4 Induced Partial Order 

       3.4.1 Theorem  [Representation]  

3.5 Finite Boolean Algebras As N-Tuples Of 0's And 1's 

3.6 Boolean Functions 

3.7 Let‘s sum  up 

3.8 Keywords 

3.9 Questions for review 

3.10 Suggested Readings 

3.11 Answer to check your progress 

 

3.0 OBJECTIVE 
 

 Learn the concept of Boolean Algebra 

 Understand Boolean Homomorphism and Isomorphism 

 Comprehend the concept of induced partial order 

 What is atom? 

3.1 INTRODUCTION 
 

Boolean logic is an abstract mathematical structure named after the famous 

Mathematician George Boole. Boole tried to formalize the process of logical 

reasoning using symbols instead of words. Boolean Algebra provides us a 

basic logic for the operations on binary numbers 0, 1. 

3. 2 DEFINITION 
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A Boolean algebra is a nonempty set S which is closed under the binary 

operations ∨ (called join), ∧ (called meet), and the unary operation ¬ (called 

inverse or complement) satisfying the following properties for all x, y, z ∈ 

S: 

 

1. [Commutativity] : x ∨ y = y ∨ x and x ∧ y = y ∧ x. 

 

2. [Distributivity] : x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) 

∨ (x ∧ z). 

 

3. [Identity elements] : There exist elements 0, 1 ∈ S such that x ∨ 0 = x 

and x ∧ 1 = x. 

 

4. [Inverse] : x ∨ ¬x = 1 and x ∧ ¬x = 0. 

 

When required, we write the Boolean algebra S as (S, ∨, ∧, ¬) showing the 

operations explicitly. 

Notice that the fourth property in the definition above uses the two special 

elements 0 and 1, 

whose existence has been asserted in the third property. This is meaningful 

when these two elements are uniquely determined by the third property. 

 

Note: 

(i) a' is called the complement of a. (a')' will be denoted by a'' and so on. 

Very often we shall write a ∙ b as ab. 

 

(ii) The binary operations in the definition need not be written as + and 

 

Instead, we may use other symbols such as ∪, ∩ (known as union and 

intersection respectively), or, ⋁, ⋀ (known as join and meet) to denote these 

operations. 
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(iii) A Boolean algebra is generally denoted by a 6-tuple (B, +, ∙, ', 0, 1) or 

by (B, +, ∙, ') or, simply by the set B in it. 

 

Examples: 

1. Let A be a non-empty set and P(A) be the power set of A. Then P(A) is a 

Boolean algebra under the usual operations of union, intersection and 

complementation in P(A). The sets ∅ and A are the zero element and unit 

element of the Boolean algebra P(A). Observe that if A is an infinite set, 

then the Boolean algebra P(A) will contain infinite number of elements. 

 

2. Let B be the set of all positive integers which are divisors of 70; i.e., B = 

{1, 2, 5, 7, 10, 14, 35, 70}. For any a, b ϵ B, let a + b = l.c.m of a, b; a ∙ b = 

h.c.f. of a, b and a' = ⁷<span style='font-size: 50%'>/₀. Then with the help of 

elementary properties of l.c.m. and h.c.f. it can be easily verified that (B, +, 

∙, ', 1, 70) is a Boolean algebra. Here 1 is the zero element and 70 is the unit 

element. 

Proposition. Let S be a Boolean algebra. Then the following statements are 

true: 

1. Elements 0 and 1 are unique. 

2. Corresponding to each s ∈ S, ¬s is the unique element in S that satisfies 

the property: s∨¬s = 1 

and s ∧ ¬s = 0. 

3. For each s ∈ S, ¬¬s = s. 

 

Proof. (1) Let 01, 02 ∈ S be such that for each x ∈ S, x ∨ 01 = x and x ∨ 02 

= x. Then, in particular, 

02 ∨ 01 = 02 and 01 ∨ 02 = 01.  

 

By Commutatively, 02 ∨ 01 = 01 ∨ 02. So, 02 = 01.  
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That is, 0 is the unique element satisfying the property that for each x ∈ S, 0 

∨ x = x. A similar argument shows that 1 is the unique element that satisfies 

the property that for each x ∈ S, x ∧ 1 = x. 

 

(2) Let s ∈ S. By definition, ¬s satisfies the required properties.  

 

For the converse, suppose t, r ∈ S are such that s ∨ t = 1, s ∧ t = 0, s ∨ r = 1 

and s ∧ r = 0.  

 

Then 

 

t = t ∧ 1 = t ∧ (s ∨ r) = (t ∧ s) ∨ (t ∧ r) = 0 ∨ (t ∧ r) = (s ∧ r) ∨ (t ∧ r) = (s ∨ t) 

∧ r = 1 ∧ r = r. 

 

(3) It directly follows from the definition of inverse, due to commutatively. 

 

Example : 

1. Let S be a nonempty set. Then P(S) is a Boolean algebra with ∨ = ∪, ∧ = 

∩, ¬A = A
c
 , 0 = ∅ 

and 1 = S. This is called the power set Boolean algebra. So, we have 

Boolean algebras of 

finite size as well as of uncountable size. 

 

2. Take D(30) = {n ∈ N : n | 30} with a ∨ b = lcm(a, b), a ∧ b = gcd(a, b) and 

¬a = 30 a . It is a 

Boolean algebra with 0 = 1 and 1 = 30. 

 

3. Let B = {T, F }, where ∨, ∧ and ¬ are the usual connectives. It is a 

Boolean algebra with 0 = F 

and 1 = T . 

 

4. Let B be the set of all truth functions involving the variables p1, . . . , pn, 

with usual operations 
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∨, ∧ and ¬. Then B is a Boolean algebra with 0 = ⊥ and 1 = >. This is called 

the free Boolean algebra on the generators p1, . . . , pn.  

 

5. The set of all formulas (of finite length) involving variables p1, p2, . . . is 

a Boolean algebra with usual operations. This is also called the free Boolean 

algebra on the generators p1, p2, . . .. Here also 0 = ⊥ and 1 = T.  So, we 

have a Boolean algebra of denumerable size. 

 

Remark : The rules of Boolean algebra treat (∨, 0) and (∧, 1) equally. 

Notice that the second 

parts in the defining conditions of  above definition of Boolean Algebra can 

be obtained from the corresponding first parts by replacing ∨ with ∧, ∧ with 

∨, 0 with 1, and 1 with 0 simultaneously. Thus, any statement that one can 

derive from these assumptions has a dual version which is derivable from 

the same assumptions. This is called the principle of duality. 

 

Theorem [Laws] Let S be a Boolean algebra. Then the following laws hold 

for all s, t ∈ S: 

 

1. [Constants] : ¬0 = 1, ¬1 = 0, s ∨ 1 = 1, s ∧ 1 = s, s ∨ 0 = s, s ∧ 0 = 0. 

2. [Idempotence] : s ∨ s = s, s ∧ s = s. 

3. [Absorption] : s ∨ (s ∧ t) = s, s ∧ (s ∨ t) = s. 

4. [Cancellation] : s ∨ t = r ∨ t, s ∨ ¬t = r ∨ ¬t ⇒ s = r. 

5. [Cancellation] : s ∧ t = r ∧ t, s ∧ ¬t = r ∧ ¬t ⇒ s = r. 

6. [Associativity] : (s ∨ t) ∨ r = s ∨ (t ∨ r), (s ∧ t) ∧ r = s ∧ (t ∧ r). 

 

Proof. We give the proof of the first part of each item and that of its dual is 

left for the reader. 

(1) 1 = 0 ∨ (¬0) = ¬0. 

 

s ∨ 1 = (s ∨ 1) ∧ 1 = (s ∨ 1) ∧ (s ∨ ¬s) = s ∨ (1 ∧ ¬s) = s ∨ ¬s = 1. 

s ∨ 0 = s ∨ (s ∧ ¬s) = (s ∨ s) ∧ (s ∨ ¬s) = s ∧ 1 = s. 

(2) s = s ∨ 0 = s ∨ (s ∧ ¬s) = (s ∨ s) ∧ (s ∨ ¬s) = (s ∨ s) ∧ 1 = (s ∨ s). 
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(3) s ∨ (s ∧ t) = (s ∧ 1) ∨ (s ∧ t) = s ∧ (1 ∨ t) = s ∧ 1 = s. 

(4) Suppose that s ∨ t = r ∨ t and s ∨ ¬t = r ∨ ¬t.  

Then 

s = s ∨ 0 = s ∨ (t ∧ ¬t) = (s ∨ t) ∧ (s ∨  ¬t) = (r ∨  t) ∧  (r ∨  ¬t) = r ∨  (t ∧  ¬t) 

= r ∨  0 = r. 

 

(5) This is the dual of (4) and left as an exercise. 

 

(6) Using distributivity and absorption, we have 

s ∨  (t ∨  r) ∧  ¬s = (s ∧  ¬s) ∨  (t ∨  r) ∧  ¬s = 0 ∨  (t ∨  r) ∧  ¬s 

= (t ∨  r) ∧  ¬s = (t ∧  ¬s) ∨  (r ∧  ¬s). 

 

(s ∨  t) ∨  r ∧  ¬s = (s ∨  t) ∧  ¬s ∨  (r ∧  ¬s) = (s ∧  ¬s) ∨  (t ∧  ¬s) ∨  (r ∧  ¬s) 

= (0 ∨  (t ∧  ¬s) ∨  (r ∧  ¬s) = (t ∧  ¬s) ∨  (r ∧  ¬s). 

 

Hence, s ∨  (t ∨  r) ∧  ¬s = (s ∨  t) ∨  r ∧  ¬s. 

Also, (s ∨  t) ∨  r ∧  s = (s ∨  t) ∧  s ∨  (r ∧  s) = s ∨  (r ∧  s) = s = s ∨  (t ∨  r) ∧  

s. 

 

Now, apply Cancellation law to obtain the required result. 

Isomorphisms between two similar algebraic structures help us in 

understanding an unfamiliar 

entity through a familiar one. Boolean algebras are no exceptions. 

 

Check Your Progress 1 

1. Explain the terms 

a. Boolean Algebra 

b. Power set Boolean Algebra 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 
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2. State and prove the Associativity law 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

3. 3 BOOLEAN HOMOMORPHISM AND 

ISOMORPHISM 
 

CONCEPT: Let (B1, ∨ 1, ∧ 1, ¬1) and (B2, ∨ 2, ∧ 2, ¬2) be two Boolean 

algebras. A function f : B1 → B2 is a Boolean homomorphism if it 

preserves 0, 1, ∨ , ∧ , and ¬. In such a case, f(01) = 02, f(11) = 12, f(a ∨ 1 b) 

= f(a) ∨ 2 f(b), f(a ∧ 1 b) = f(a) ∧ 2 f(b), f(¬1a) = ¬2f(a). 

 

CONCEPT: A Boolean isomorphism is a Boolean homomorphism which is 

a bisections. 

Unless we expect an ambiguity in reading and interpreting the symbols, we 

will not write the 

subscripts with the operations explicitly as is done in above Definition. 

 

Example. Recall the notation [n] = {1, 2, . . . , n}. The function f : P([4]) → 

P([3]) defined 

by f(S) = S \ {4} is a Boolean homomorphism.  

 

We check two of the properties 

 

f(A ∨  B) = f(A ∪  B) = (A ∪  B) \ {4} = (A \ {4}) ∪  (B \ {4}) = f(A) ∨  f(B). 

 

f(1) = f([4]) = [4] \ {4} = [3] = 1. 

 

 

Let (L, ≤) be a distributive complemented lattice. Then, L has two binary 

operations ∨  and ∧  and the unary operation ¬x. It can be verified that (L, ∨ , 
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∧ , ¬) is a Boolean algebra. Conversely, let (B, ∨ , ∧ , ¬) be a Boolean 

algebra. Is it possible to define a partial order ≤ on L so that (B, ≤) will be a 

distributive complemented lattice, and then in this lattice, the resulting 

operations of ∨ , ∧  and ¬ will be the same operations we have started with? 

 

 

Theorem :Let (B, ∨ , ∧ , ¬) be a Boolean algebra. Define the relation ≤ on B 

by 

a ≤ b if and only if a ∧  b = a for all a, b ∈  B. 

Then (B, ≤) is a distributive complemented lattice in which lub{a, b} = a ∨  

b and glb{a, b} = a ∧  b for all a, b ∈  B. 

Proof. We first verify that (B, ≤) is a partial order. 

 

Reflexive: s ≤ s if and only if s ∧  s = s, which is true. 

 

Ant symmetry: Let s ≤ t and t ≤ s. Then we have s = s ∧  t = t. 

 

Transitive: Let s ≤ t and t ≤ r. Then s ∧  t = s and t ∧  r = t.  

 

Using associativity, 

 s ∧  r = (s ∧  t) ∧  r = s ∧  (t ∧  r) = s ∧  t = s; consequently, s ≤ r. 

Now, we show that a ∨  b = lub{a, b}.  

 

Since B is a Boolean algebra, using absorption, we get (a ∨  b) ∧  a = a and 

hence a ≤ a ∨  b.  

Similarly,  b ≤ a ∨  b. So, a ∨  b is an upper bound for {a, b}. 

Now, let x be any upper bound for {a, b}.  

 

Then, by distributive property,  

(a ∨  b) ∧  x = (a ∧  x) ∨ (b ∧  x) = a ∨  b. So, a ∨  b ≤ x.  

Thus, a ∨  b is the lub of {a, b}.  
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Analogous arguments show that 

a ∧  b = glb{a, b}. 

Since for all a, b ∈  B, a∨ b and a∧ b are in B, we see that lub{a, b} and 

glb{a, b} exist. Thus (B, ≤) 

is a lattice. 

Further, if a ∈  B, then ¬a ∈  B. This provides the complement of a in the 

lattice (B, ≤). Further, 

both the distributive properties are already satisfied in B. Hence (B, ≤) is a 

distributive complemented lattice. 

In view of above Theorem, we give the following definition. 

 

3.4 INDUCED PARTIAL ORDER 
 

DEFINITION: Let (B, ∨ , ∧ , ¬) be a Boolean algebra. The relation ≤ on B 

given by a ≤ b if and only if a ∧  b = a for all a, b ∈  Bis called the induced 

partial order.  

 

A minimal element of B with respect to the partial order ≤, which is 

different from 0 is called an atom in B. 

 

EXAMPLE:  

1. In the power set Boolean algebra, singleton sets are the only atoms. 

2. The {F, T } Boolean algebra has only one atom, namely T . 

 

Proposition 3.3.1. Each finite Boolean algebra has at least one atom. 

 

Proof. Let B be a finite Boolean algebra. Assume that no element of B is an 

atom. Now, 0 < 1 and 

1 is not an atom. Then there exists b1 ∈  B such that 0 < b1 < 1. Since b1 is 

not an atom, there exists 

b2 ∈  B such that 0 < b2 < b1 < 1. By induction it follows that we have a 

sequence of elements (bi) 

such that 0 < · · · < bi < bi−1 < · · · < b1 < 1. As B is finite, there exist k > j 
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such that bk = bj. We 

then have bk < bk−1 < · · · < bj = bk. This is impossible. Hence B has at least 

one atom. 

 

Proposition 3.3.2. Let p and q be atoms in a Boolean algebra B. If p  q, 

then p ∧  q = 0. 

Proof. Suppose that p ∧  q 6= 0. We know that p ∧  q ≤ p. If p ∧  q  p, then p 

∧  q < p. But this is not 

possible since p is an atom. So, p∧ q = p. Similarly, q∧ p = q. By 

commutativity, p = p∧ q = q∧ p = q. 

 

Theorem 3.4.1 [Representation]  

Let B be a finite Boolean algebra. Then there exists a set X 

such that B is isomorphic to P(X). 

Proof. Let X be the set of all atoms of B. By Proposition 8.3.13, X    ∅.  

Define f : B → P(X) by f(b) = {x ∈  B : x is an atom and x ≤ b} for b ∈  B.  

We show that f is the required Boolean isomorphism. 

 

Injection: Suppose b1   b2. Then, either b1 ≰ b2 or b2  ≰  b1. Without loss of 

generality, let b1  b2. 

Note that b1 = b1 ∧  (b2∨  ¬ b2) = (b1 ∧  b2) ∨  (b1 ∧  ¬b2). Also, the 

assumption b1  b2 implies b1 ∧  b2   b1 and hence b1 ∧  ¬b2  0 .So, there 

exists an atom x ≤ (b1 ∧  ¬b2) and hence x = x ∧  b1∧  ¬ b2.  

 

Then x ∧  b1 = (x ∧  b1 ∧  ¬ b2) ∧  b1 = x ∧  b1 ∧  ¬ b2 = x. 

Thus, x ≤ b1.  Similarly, x ≤ ¬ b2. As x  0, we cannot have x ≤ b2 (for, x ≤ ¬ 

b2 and x ≤ b2 imply 

x ≤ b2∧  ¬ b2 = 0). Thus there is an atom in f(b1) which is not in f(b2). 

Therefore, f(b1)  f(b2). 
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Surjection: Let A = {x1, . . . , xk} ⊆ X. Write a = x1 ∨  · · · ∨  xk (if A = ∅, 

take a = 0). Clearly, 

A ⊆ f(a). We show that A = f(a).  

 

So, let y ∈  f(a).  

 

Then y is an atom in B and y = y ∧  a = y ∧  (x1 ∨  · · · ∨  xk) = (y ∧  x1) ∨  · 

· · ∨  (y ∧  xk). 

Since y  0, by Proposition 3.3.2, y ∧  xi  0 for some i ∈  {1, 2, . . . , k}. As 

xi and y are atoms, we have y = y ∧  xi = xi and hence y ∈  A. That is, f(a) ⊆ 

A so that f(a) = A.  

Thus, f is a surjection. 

 

Preserving 0, 1 : Clearly f(0) = ∅  and f(1) = X. 

Preserving ∨ , ∧  : By definition, 

 

x ∈  f(b1 ∧  b2) ⇔ x ≤ b1∧  b2⇔ x ≤ b1 and x ≤ b2 

⇔ x ∈  f(b1) and x ∈  f(b2) ⇔ x ∈  f(b1) ∩ f(b2). 

For the other one, let x ∈  f(b1 ∨  b2). Then, x = x ∧  (b1 ∨  b2) = (x ∧  b1) ∨  (x 

∧  b2). So, x ∧  b1 ≠ 0 or x ∧  b2 ≠ 0.  

Without loss of generality, suppose x ∧  b1  0. As x is an atom, x ≤ b1 and 

hence x ∈  f(b1) ⊆  f(b1) ∪  f(b2). Conversely, let x ∈  f(b1) ∪  f(b2).  

 

Without loss of generality, let x ∈  f(b1). Thus, x ≤ b1 and hence x ≤ b1 ∨  b2 

which in turn implies that x ∈  f(b1 ∨  b2).  

 

Therefore, x ∈  f(b1 ∨  b2) ⇔ x ∈  f(b1) ∪  f(b2). 

 

Preserving ¬ : Let x ∈  B. Then f(x)∪ f(¬x) = f(x∨ ¬x) = f(1) = X and 

f(x)∩f(¬x) = f(x∧ ¬x) = 

f(0) = ∅. Thus f(¬x) = f(x)c. 
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Corollary 8.3.16. Let B be a finite Boolean algebra. 

1. If B has exactly k atoms then B is isomorphic to P({1, 2, . . . , k}). Hence, 

B has exactly 2
K
  elements. 

2. Fix b ∈ B. If p1, . . . , pn are the only atoms less than or equal to b, then b 

= p1 ∨ · · · ∨ pn 

 

Check Your Progress 2 

 

1. What is Boolean Isomorphism? Explain with example 

 

_______________________________________________ 

 
_______________________________________________ 

 

_______________________________________________ 

 

2. Define Induced partial order & atom. 

_______________________________________________ 

 

_______________________________________________ 
 

 

3.5 FINITE BOOLEAN ALGEBRAS AS N-

TUPLES OF 0'S AND 1'S 
 

The simplest nontrivial Boolean algebra is the Boolean algebra on the set B2 

= {0, 1}. The ordering on B2 is the natural one, 0 ≤ 0, 0 ≤ 1, 1 ≤ 1. If we treat 

0 and 1 as the truth values "false" and "true," respectively, we see that the 

Boolean operations ∨ (join) and ∧  (meet) are nothing more than the logical 

connectives ∨ (OR) and ∧  (AND). The Boolean operation, – , 

(complementation) is the logical ¬ (negation). In fact, this is why the 

symbols –,∨, and ∧ were chosen as the names of the Boolean operations. 

The operation tables for [B2; –,∨,∧] are simply those of "or," "and," and 

"not," which we repeat here: 
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3.6 BOOLEAN FUNCTIONS 
 

A Boolean Function is described by an algebraic expression called Boolean 

expression which consists of binary variables, the constants 0 and 1, and the 

logic operation symbols. Consider the following example. 

(1) 

    

Here the left side of the equation represents the output Y. So we can state (1) 

as 

      ̅̅ ̅̅      

 

Truth Table Formation 

A truth table represents a table having all combinations of inputs and their 

corresponding result. 

It is possible to convert the switching equation into a truth table. For 

example, consider the following switching equation. 

F(A, B , C) =  A + BC 

The output will be high (1) if A = 1 or BC = 1 or both are 1. The truth table 

for this equation is shown by Table (a). The number of rows in the truth 

table is 2
n
 where n is the number of input variables (n=3 for the given 

equation). Hence there are 2
3
 = 8 possible input combination of inputs 
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Methods to simplify the boolean function 

The methods used for simplifying the Boolean function are as follows − 

 Karnaugh-map or K-map, and 

 NAND gate method. 

 

Karnaugh-map or K-map 

The Boolean theorems and the De-Morgan's theorems are useful in 

manipulating the logic expression. We can realize the logical expression 

using gates. The number of logic gates required for the realization of a 

logical expression should be reduced to a minimum possible value by K-

map method. This method can be done in two different ways, as discussed 

below. 

Sum of Products (SOP) Form 

It is in the form of sum of three terms AB, AC, BC with each individual 

term is a product of two variables. Say A.B or A.C etc. Therefore such 

expressions are known as expression in SOP form. The sum and products in 

SOP form are not the actual additions or multiplications. In fact they are the 
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OR and AND functions. In SOP form, 0 represents a bar and 1 represents 

an unbar. SOP form is represented by 

 

 

 

 

 

 

 

 

 

Product of Sums (POS) Form 

It is in the form of product of three terms (A+B), (B+C), or (A+C) with 

each term is in the form of a sum of two variables. Such expressions are 

said to be in the product of sums (POS) form. In POS form, 0 represents an 

unbar and 1 represents a bar. POS form is represented by . 

Given below is an example of POS. 
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NAND gates Realization : 

NAND gates can be used to simplify Boolean functions as shown in the 

example below. 

 

            ̅ ̅        ̅ ̅    ̅ ̅   ̅ ̅  

 

Check Your Progress 3 

1. Explain the methods to simplify the Boolean functions 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

 

3.7 LET’S SUM UP 
 

Boolean Algebra an essential tool since telephone, computers and many 

kinds of electronic control devices are based on a binary system, this branch 

of Mathematics are very useful for the internal working. 
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3.8 KEYWORDS 
 

1. Boolean algebra, is a method for describing a set of objects or ideas 

 

2. Truth table is a table, which represents all the possible values of 

logical variables/statements along with all the possible results of 

given combinations of values 

 

3. Unary Operators: Unary operators are the simplest operations 

because they can be applied to a single True or False value. Identity: 

The identity is our trivial case. It states that True is True and False is 

False. 

4. Negation: The negation operator is commonly represented by a tilde 

(~) or ¬ symbol. It negates, or switches, something‘s truth value. 

3.9 QUESTIONS FOR REVIEW 
 

1. What is the number of Boolean homomorphisms from P([4]) to 

P([3])? 

 

2. Let B be a Boolean algebra. Then prove the following: 

(a) If B has three distinct atoms p, q and r, then p ∨ q 6= p ∨ q ∨ r. 

(b) Let b ∈ B. If p, q and r are the only atoms less than or equal to b, 

then b = p ∨ q ∨ r. 

 

3. What are the atoms of the free Boolean algebra with generators p1, 

pn? 

 

4. We know that a finite Boolean algebra must have at least one atom. 

Is ‗finite‘ necessary? 
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5. Show that the set of subsets of N which are either finite or have a 

finite complement is a denumerable Boolean algebra. Find the atoms. 

Is it isomorphic to the free Boolean algebra with 

generators p1, p2, · · · ? 
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3.11 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. [HINT: Provide definition – 3.2] 

2. [Provide the proof – 3.2.2] 

3. CONCEPT: A Boolean isomorphism is a Boolean homomorphism 

which is a bijection.—3.2 & provide example 

4. DEFINITION: Let (B, ∨, ∧, ¬) be a Boolean algebra. The relation ≤ 

on B given by a ≤ b if and only if a ∧ b = a for all a, b ∈ Bis called 

the induced partial order.  

 A minimal element of B with respect to the partial order ≤, which is 

different from 0 is called an atom in B. –3.3 Provide examples & 

explain one proposition 

 

5. State the types and explain anyone in details – 3.5.2 
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UNIT 4: RELATIONS AND DIAGRAPHS 

I 
 

STRUCTURE 
 

4.0 Objectives 

4.1 Concept of Digraphs. 

4.2 Special Properties of Binary Relations  

4.3 Big 0 Notation  

4.4 Equivalence Relations 

4.4.1 Compatibility Relations 

4.5 The integer modulo n 

4.6 Ordering Relations  

4.6.1 POSET Diagram 

4.6.2Hasse Diagram 

4.6.3Special Elements in POSET (Minimal & Maximal Element) 

4.6.4 Well-ordered Sets 

4.7  Enumeration 

4.8 Lattices 

4.9 Applications: Strings and Ordering Strings 

4.9.1 Lexicographic order 

4.10 Let‘s sum  up 

4.11 Keyword 

4.12 Question for review 

4.13 Suggested Reading 

4.14 Answer to check our progress 

 

4.0 OBJECTIVES 
 

 What is the concept of Digraphs 

 Special Properties of Binary Relation 

 Big O notation 
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Nahor 

Hanan 

Abram 

Milcah 

Sarai 

Isaac Bethuel 

Rebecca 

Esau 

Jacob 

 What is an Equivalence Relation? 

 Ordering Relation, Partially Ordered sets, POSET diagram 

 Enumeration, Enumeration Ordering &Lattices 

 

4.1 CONCEPT OF DIAGRAPHS  
 

    Terah 

     

 

 

 

 

 

 

 

  

 

 

 

 

Figure 4.1 

What is this diagram all about? At first sight it reflecting some name and 

arrows must be indicating some relation. 

 The above diagram is known as directed graph / digraphs 

representing the kinship relation ―is parent of‖ between eleven 

people. Each individual is represented by point, and an arrow is 

drawn from each parent to each of the respective children. Thus, 

Terah has three children.  

 The binary relation represented by this directed graph is the set of 

pairs: 

 What is this? 
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 { ( Terah, Hanan), ( Terah, Nahor), ( Terah, Abram), (Hanan, 

Milcah), (Hanan, Sarai), (Abram, Issac), (Milcah, Bethuel), 

(Nahor, Bethuel), (Bethuel, Rebecca), (Sarai, Issac),(Issac, 

Jacob), (Issac ,Esau), (Rebecca, Esau), (Rebecca, Jacob)} 

 So from both the diagram and the ordered pair, we can make out 

that diagram is easy to understand as compare to ordered pairs. 

 

Concept:A pair of sets G = (V, E) is a directed graph / digraph if   ⊆

   .The elements of V are called vertices and the elements of E are called 

edges. An edge (x, y) is said to be from x to y and is represented by an arrow 

with the tail at x and the head at y. 

 Such an edge is said to be incident from x, incident to y, and 

incident on both x and y. 

 If there is an edge in E from x to y we say x is adjacent to y. 

 The number of edges incident from a vertex is called out-degree 

of the vertex and the number of edges incident to a vertex is 

called the in-degree. 

 A edge from a vertex to itself is called a loop and will 

ordinarily permitted. 

 A digraph with no loops is called loop-free or simple. 

[Note: Unless directed all digraphs are presumed to be finite; that is v is 

assumed to be a finite set.] 

Example: With reference to Figure 6.1,  

 The edge (Terah, Abram) is from Terah to Abram.  

 There was two edge incident on Abram i.e. (Terah, Abram) is 

incident to Abram and ( Abram, Issac) is incident from Abram. 

 Terah has out-degree three. 

 No other vertex has in-degree and out-degree. 

 

[Note:  For any digraph (V, E), E is a binary relation on V. Similarly any 

binary relation  

 ⊆       may also be viewed as a digraph G = ( A ∪ B, R).] 
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Sara

i 

Issac 

Abram 

a 
b 

 When more than one edge is permitted incident from one vertex to 

another vertex, then the result is a directed multigraph then the result 

is a directed multigraph and then two or more edges incident from a 

vertex x to vertex y are called multiple edges. 

 A graph G
1
 = (V

1
, E

1
) is a sub graph of a graph G = (V, E) if V

1⊆V 

and 

E ⊆ E  ∩ ( V * V) . G is a proper subgraph of G if G
1  G. 

 

      

 

 

 

    Figure 4.2 

The above diagram comprises of vertices { Sarai, Abram, Issac} and the 

edges {(Sarai, Issac), (Abram, Issac)} is a proper sub graph of the digraph of 

figure 1. 

 Two graphs G1 =(V1, E1) and G2 =(V2, E2) are isomorphic if there is a 

one-to-one onto function : V1  V2 that preserves adjacency. By 

preserving adjacency, we mean for digraphs that for every pair of 

vertices v and win V1, (v, w) is in E1 if and only if  

[ ƒ (v), ƒ (w)] is in E2 or in other words, 

E2 =[ ƒ (v), ƒ (w)] | (v, w) ϵ E1 

 

 In this case ƒ a (directed graph) isomorphism from G1  G2. 

 An invariant of graphs ( under isomorphism) is a function g on 

graphics such that g(G1) = g(G2) whenever G1 and G2 are isomorphic. 

 

Example: The diagraphs in figure 3 below are isomorphic. They both have 

five vertices, eight edges, and degree spectrum (2, 1), (2, 1), (2, 1), (2, 1), (0, 

4).  

 



Notes 

70 

a 

b c c d d 

e 

e 

 

 

 

  

 

 

Example: Prove that each of the invariants cited in this section is truly an 

invariant: 

a. The number of vertices 

b. The number of edges 

c. The degree spectrum. 

Solution:  Suppose that ƒ is an isomorphism from G1 G2. 

It follows from the definition of one-to-one onto 

function that / gives a one-to-one correspondence 

between the vertices of  G1  and G2. 

a. There is one-to-one correspondence between edges of G1  and G2 

given by :  ƒ[(x, y)] = [ ƒ(x) , ƒ(y) ] 

b. Suppose v1, …, vn is a list of the vertices of G1 , ordered in 

decreasing order of in-degree, and within vertices of equal in-degree, 

by increasing out-degree.  

o For any vi, ƒ(vi) has the same in-degree in G2 as vi  in G1 and 

likewise for out-degree. 

o This is because every edges (vi, vj) in G1 corresponds 

uniquely to an edge [ƒ(vi) , ƒ(vj) ] in G2, and for every edge in 

G2 there is such a corresponding edge in G1. 

o Thus, the degree spectrum 

{ in-degree (v1), out –degree (v1)}, …,   in-degree (vn), out –

degree (vn)}, must be identical  to the degree spectrum  
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a 

b 

c d 

e 

f 

a 

b 

c 

c 
b a 

{ in-degree ƒ (v1), out –degree ƒ(v1)}, …,   in-degree ƒ(vn), 

out –degree ƒ(vn)}. 

 

4.2 SPECIAL PROPERTIES OF BINARY 

RELATION: 
 

We know following the following properties of a binary relation as: 

1. Transitivity Ɐx, y, z if x R y and y R z, then x R z; 

2. Reflexivity Ɐx  x R x; 

3. I reflexivity Ɐx  x R x; 

4. Symmetry Ɐx, y  if x R y, then y R x; 

5. Ant symmetry Ɐx, y  If x R y and y R x, then x = y; 

6. Asymmetry Ɐx, y  If x R y then y R x 

 

 

 

 

 

 

 A digraph is transitive if any of the three vertices like in above 

figure d, e, f, exhibits a relation like there is an edge from d to e, 

and an edge from e to f, also there is an edge from d to f. 

[NOTE: d, e, and f in the above definition need not to be distinct.] 

 

 

 

 

 

Transitive Relation 

Reflexive Relation 

Irreflexive Relation 
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c 
b a 

c 
b a 

 

 

 A digraph is reflexive if every vertex has an edge from the vertex to 

itself (i.e. self-loop)  and it is irreflexive if none of the vertices have 

self- loop. Refer the above figure 

 

 

 

 

 A digraph is symmetric if for every edge in one direction between 

points there is also an edge in the opposite direction between the 

same two points as illustrated in the above figure. 

 

 

 

 

 

 A digraph is Antisymmetric if no two distinct points have an 

edge going between them in both direction. 

 A asymmetric digraph is further restricted, no self-loops are 

permitted. 

 A binary relation that is transitive, reflexive and Antisymmetric 

is called a partial ordering relation. 

 

Example: Give an example of a nonempty set and a relation on the set that 

satisfies each of the following combinations of properties; draw a digraph of 

the relation. 

a. Symmetric and transitive, but not reflexive 

Symmetric Relation 

Antisymmetric Relation 
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x y z 

x y z 

x y z 

x y z 

x 
y z 

 

 

b. Symmetric and reflexive, but not transitive 

 

 

 

c. Transitive and reflexive, but not symmetric 

  

 

 

 

d. Transitive and reflexive, but not Antisymmetric 

  

 

 

 

 

e. Transitive and antisymmetric, but not reflexive 

  

 

 

f.  

 

 

g. Ant symmetric and reflexive, but not transitive. 
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x y z 
 

4.3 BIG O NOTATION: 
 

Concept:Let g: N  R be a function from the set of nonnegative integers 

into real numbers. O(g) denotes the collection of all functions ƒ: N  R for 

which there exist constants c and k (possibly different for each ƒ) such that 

for every n ≥ k | ƒ(n)| ≤ c . |g(n)|. If ƒ is in O(g) we say that ƒ is of order g. 

 

Lemma 1: If there exists a constant k, such that for every n ≥ k1 ,  ƒ(n) ≥ 0 

and g(n) ≥ 0, then ƒ is in O(g) if and only if there exist constants c and k2, 

such that for every n ≥ k2 , ƒ(n) ≤ c . g(n). 

Proof: Since ƒ(n) and g(n) both are nonnegative for n ≥ k1, we have  

| ƒ(n) | = ƒ(n)  and | g(n) | = g(n) for n ≥ max (k1 , k2). The lemma then follow 

immediately from the above concept. 

 

Example 1: Consider the functions ƒ(n) = 2
n
 and ƒ(n) = 3

n
. Since 3

n
  ≥2

n
  for 

all n ≥ 0, we know that ƒ is in O(g) and g is not in O(g).  

Suppose g is in O(g) then there exist c and k such that for all positive n ≥ k, 

3
n 
≤ c . 2

n
 which implies a contradiction 

  
     

         
 

 

Example 2: Consider the functions  

     {
                                
                                           

 

and  

     {
                               
                                           

 

 

these functions are pathological, as their definitions might lead one to 

suspect. Suppose that ƒ is in O(g). Then for some c and k it would be true 

that for all (positive) n ≥ k, ƒ(n) ≤ c. g(n). Taking n to be even, this would 

mean that 2
n
 ≤ c. n, which is a contradiction. Similarly, for the case when n 

is odd, show that g cannot be in O (ƒ).  
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[NOTE: We can avoid considering special names, like ƒ and g for the 

functions being compared.] 

 

2
n 
is in O (3

n
) , but 3

n 
is not in O(2

n
). 

For example , since 1
2 
+ 2

2
 + …+ n

2 
= (1 / 3) n (n + 1 / 2) (n + 1) = 1/3 n

3
 + 

O (n
2
) stands for g(n) = 1 / 2 n

2 
+ 1 / 6 n, which is specific function g in O(n

2
 

).  

 

THEOREM: The relation Q = {(f, g) | ƒ : N R, g : N R, Cis in O(g) } is 

reflexive and transitive, but is not a partial ordering or an equivalence 

relation.  

 

PROOF: We must prove four things  

a. Q is reflexive 

b. Q is transitive 

c. Q is not Antisymmetric 

d. Q is not symmetric 

 

a. Since | ƒ(n) | ≤ 1. | ƒ(n) | for all n ≥ 1, we know that  (ƒ , ƒ) is in q for 

all ƒ: R  R, and so Q is reflexive. 

b. Suppose (ƒ, g) and (g, h) are in Q. Then there exist c1 , c2, k1 and k2 

such that for all n ≥ ,  

| ƒ(n) | ≤ c1. |g(n)|,and forall n ≥k2 , | g(n) | ≤ c2. | h(n) |. It follows that 

for all n greater than or equal to the maximum k1 and k2, | ƒ(n) | ≤ c1. | 

g(n) | ≤ c1 . c2 . | h (n) |, and so Q is transitive. 

c. It is also possible to show that to have(ƒ, g) and (g, ƒ) being in Q. 

d. Previous example 1 shows that it is possible to have (ƒ, g) in Q 

without (g, ƒ) being in Q. 

 

Example: Prove or disapprove each of the following: 

a. If ƒ is in O(g) and c is a positive constant, then c . ƒ is in O(g) 
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Suppose for all n > k, | ƒ(n) | < a . | g(n) |. Then c . | ƒ(n)| ≤ c . a | g(n) 

|  

 

b. If ƒ1 andƒ2 are in O(g) thenƒ1 . ƒ2 then ƒ1 + ƒ2 is in O(g) 

The crucial fact here is that | x + y| ≤ | x | + | y |.  

Suppose for all n > k1 , | ƒ1(n) | < a1 . | g(n) | and  

for all n > k2, | ƒ2(n) | < a2 . | g(n) |.  

Then for all n > max (k1 , k2 ),  

| ƒ1(n) + ƒ2(n) | ≤  | ƒ1(n) | + | ƒ2(n) | ≤ a1 . | g(n) | + a2 . | g(n) | ≤ (a1 + 

a2 ). | g(n) |. 

 

c. If ƒ1 is in O(g1) and ƒ2 is in O(g2) then ƒ1. ƒ2  is in O(g1 . g2)  

The crucial fact here is that | x . y| = | x | . | y |.  

Suppose for all n > k1 , | ƒ1(n) | ≤ a1 . | g1(n) | and  

for all n > k2 , | ƒ2(n) | ≤ a1 . | g2(n) |.  

Then for all n ≥ max , (k1 , k2 ), 

| ƒ1(n) . ƒ2(n) | ≤  | ƒ1(n) | . | ƒ2(n) | ≤ a1 . | g1(n) | . a2 . | g2(n) | ≤ (a1. a2 

). | g1(n). g2(n)  | 

 

d. If ƒ1 is in O(g1) and ƒ2 is in O(g2) then ƒ1 + ƒ2  is in O(g1 + g2)  

This is true for positive valued functions, but it is false if we consider 

negative valued function. 

Consider ƒ(x) = x, g1(x) = x
2
 and g2(x) =  –  x

2
. 

Clearly, ƒ is in O(g1)  and in O(g2)  ,due to the absolute values, but 

O(g1 + g2) = O(0), and ƒ cannot be in O(0). 

 

CHECK YOUR PROGRESS 1 

1. What is Digraph? Explain the transitive property of Digraphs. 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 
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2. Explain the Big O notation 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

4.4 EQUIVALENCE RELATION: 
 

 Consider a general example, suppose we want to buy a gift from a 

departmental store which cost Rs. 50. It wouldn‘t matter to the cashier 

of the departmental store to accept Rs. 50 , credit or debit card or a 

credit note of Rs. 50 or gift coupon of Rs. 50, as he will be accept any 

of this. That means these all types are equivalent in purchasing power.  

 We will consider other situation, suppose for example Rs. 50 note is 

lighter than the sum of coins that is equal to Rs. 50. Suppose we have 

tostore it in a bag then obviously weight of bag containing coins 

whose sum is Rs. 50  would be heavier than a bag containing Rs. 50 

note. These two bags are not equivalent in terms of weight. 

 The meaning of equivalent depends on the context and expresses the 

notion of being the same in those respects relevant to the context. 

 A binary relation is an equivalence relation if it is transitive. For 

example, consider the relation ― was born in the same month as‖ This 

relation is clearly reflexive, since each individual was born in the 

same month as himself. 

 It is equally clearly symmetric – if individual A was born in the same 

month as individual B, then B was born in the same month as A. 

 There is no question about transitivity. A and B were born in the same 

month and if B and C were born in the same month, no one is likely to 

deny that A and C must also have born in the same month. 

 Equivalence relation can also be considered in another way of 

dividing things into classes. 

 Consider the same example as above ―was born in the same month as 

‖ 
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 Partition the set of al living human beings into twelve disjoint classes, 

corresponding to the twelve months of the year. Each of these 

equivalence classes consists of all the people who were born in a 

given month like November.  

 Any time a set is partitioned into disjoint non empty subsets an 

equivalence relation is involved  

 The two notions i.e. treating a case in terms of relation 

and in termsof partition are interchangeable. 

 

CONCEPT:  Given a set A, a partition of A is a collection P of disjoint 

subsets whose union is A. That is  

1. For any B ∈ P, B⊆A; 

2. For any B, C ∈ P, B ∩ C = ∅, or B = C; and 

3. For any x ∈ A there exist B ∈ P, such that x ∈ B. 

Concept: Given any set A and any Equivalence relation R on A, the 

equivalence class [x] of each element x of A is defined [x] = { y ∈ A | x R 

y}  

[NOTE: we can have [x] = [y], even if x = y, provided x R y] 

 

THEOREM: Given any set A and any equivalence relation R on A, S = 

{[x] | x ∈ A} is a partition of A into disjoint subsets. Conversely , if  P is a  

partition of A into nonempty disjoint subsets, then P is the set of equivalence 

classes for the equivalence relation E defined on A by a E b if and only if a 

and b belongs to the same subset of P. 

 

PROOF: 

1. Clearly by the definition of [x], [x]⊂ A. 

2.  [x] ∩ [y] = { z∈ A | x R z and y R z}. If this set is not empty, then 

for some z ∈ A , xR z and y R z; but then, since R is transitive and 

symmetric, x R y, so that [x] = [y]. 

3. For any x ∈ A, [x] ∈ S. 
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Example 1: Tell how many distinct equivalence classes there are for 

each of the following equivalence relations. 

a. Two people are equivalent if they are born in the same week. 

53 – as one class for each week 

 

b. Two people are equivalent if they are born in the same year. 

One class for each year in which a person was born, possibly an 

unbounded number. 

 

c. Two people are equivalent if they are of the same sex. 

Two, one for males and other for females. 

 

Example 2:  Suppose R is an arbitrary transitive reflexive relation 

on a set A. Prove that the relation E defined by x E y is an 

equivalence relation on A if and only if x R y and y R x. 

Solution:  

Transitivity: if x E y and y E z, then  x R y and y R x , y R z and 

z R y. 

Since R is transitive, this means x R z and z R x which means x E 

z. 

Reflexivity: Since R is reflexive, x R x, and so also x E x. 

Symmetry: If x E y, then x R y and y R x, which means y E x. 

 

Example 3: Let S={1,2,3,4,5,6} and   A1 ={3,6} A2 ={1,4} A3 = 

{2,5} 

a. Is A1, A2,, A3 a partition of S ? Yes. 

b. Give a partition of S? 

 {,2,4,6} {1,3,5} 

  {1,2} {3,4,5} {6} 

4.4.1 Compatibility Relations: 
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If a relation is only reflexive and symmetric then it is called a compatibility 

relation. A table shown below represents a compatibility relation. So, every 

equivalence relation is a compatibility relation, but not every compatibility 

relation is an equivalence relation. 

 x y Z 

x 1 1 1 

y 1 1 -- 

z 1 -- 1 

 

4.5 THE INTEGERS MODULO M: 
 One of the important applications of Equivalence Relation in Computer 

Science, is modular arithmetic. 

 It is required because of finite storage limitations and finite accuracy 

limitations of hardware arithmetic operations on computers. 

 We can take the simple example of our 12- hour clock, which counts 

seconds and minutes modulo 60 and hours 12. 

 

CONCEPT: Let m be any positive integer. The relation congruence modulo 

m [written ≡ (mod m)],  is defined on the integers by x ≡ (mod m) if and 

only if x = y + a . m for some integer a. 

 

THEOREM: For any positive integer m, the relation≡ (mod m) is an 

equivalence relation on the integers, and partitions the integers into m 

distinct equivalent classes: [0], [1], … , [m – 1 ]. 

 

PROOF: If x is any integer, the division algorithm implies x = mq + r,  

where q and r are integers and 0 ≤ r < m. thus, x ≡ r mod m and [x] = [r]. 

Thus, each equivalence class for this relation is one of the classes [0] , [1], 

…, [ m – 1].  
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Morever, if [x] = [y] where 0 ≤ x ≤ y ≤ m – 1, then y = ma + x for some 

integer a. 

Therefore, 0 ≤ y – x  = ma < m implies a = 0 and x = y. 

 

The equivalence class [r] is frequently called a congruence class, and the 

collection of congruence classes [0], [1], …, [ m -1 ] of integers with respect 

to the relation ≡  (mod m) is customarily denoted by Zm , for any positive 

integer m. That is, Zm = { [0], [1], …, [m -1 ] }. Arithematic on the integers 

can be extended to arithmetic on  Zm in a natural way: 

   [x] + [y] = [ x + y]; 

   -[x] = [ - x ]; 

   [x] . [y] = [ x . y ] 

 

THEOREM: The operations +,  –  , and  .  on Zmare well defined functions. 

PROOF: 

1. Suppose x1 ≡ x2 ( mod m) and y1 ≡ y2 ( mod m). We need to show 

that  

x1 + y1  = x2 + y2 ( mod m). 

By the definition of  ≡ ( mod m), we know that x1 =  x2 + a . m for some 

integer a, y1 =  y2 + b . m for some b.  

It follows that x1 + y1  ≡ (x2 + y2 ) + (a +b) . m, so that x1 + y1  = x2 + y2 ( 

mod m). 

 

2. Suppose that x1 ≡ x2(mod m). Then x1 =  x2 + a . m for some a, and  

– x1 = – x2 + (– a) . m,  so that  [– x1]  =  [ – x2]. 

 

3. Suppose that x1 ≡ x2 ( mod m) and y1 ≡ y2 ( mod m).  

Then x1 =  x2 + a . m for some integer a, y1 =  y2 + b . m for some b.  

It follows that x1 . y1 =  x2 . y2  + [x2 . b + y2. a + a . b . m] . m, so that  

x1 . y1 ≡  x2 . y2 ( mod m).  

 

As the operation addition, subtraction and multiplication holds true so we 

will have following laws: 



Notes 

82 

1. [x] + [y] = [y] + [x]    Addition is 

commutative 

2. [x] . [y] =  [y] . [x]    Multiplication is 

commutative 

3. ([x] + [y] ) + [z] = [x] + ( [y]  + [z] )   Addition is Associative 

4. ([x] .  [y] ) .  [z] = [x] .  ( [y]  .  [z] )  Multiplication is 

Associative 

5. ([x] + [y] ) . [z] = [x] .  [z] + [y] . [z]  Multiplication 

distributes over addition 

 

CONCEPT:  

o Let x and y be integers. Recall that xdividesy if there exist an integer 

z such that x . z = y.  

 

o The greatest common divisor of the two positive integers is the 

largest positive integer that divides both of them. The notation gcd (x 

, y) denotes the greatest common divisor of x and y.  

 

o Two integers are relatively prime if their greatest common divisor is 

1. 

 

Example: The greatest common divisor of 237 and 204 is 3. Also, gcd(237, 

158) = 79, and gcd (237, 203) = 1. Thus, 237 and 203 are relatively prime. 

 

THEOREM: If x and m are relatively prime positive integers then, for 

every positive integer w, the equivalence classes [w],  [w + x], [w + 2 . x], 

…, [w + ( m – 1) . x] are all distinct. 

First we will prove the Lemma (lemma is a small results) :  

Suppose x and m are positive integers and r is the smallest positive integer 

for which there exist integers c and d such that r = c . x + d . m. Then r = gcd 

(x, m). 

 

PROOF: 
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 We will first show that r divides x. Suppose x = p . r + q, where 0 ≤  

q <  r. ( That is, q is the remainder when x is divided by r.) then,  

 q =  x –p . r   = x – p . ( c . x + d . m) 

o = ( 1- p . c) . x + (– p . d) . m 

 

 Since r is the smallest positive integer of this form, and 0 ≤ q < r, it 

must be that q = 0, which is to say r divides x. 

 If we interchange x and m in the above argument, it will gives us 

results as r also divides m. 

 Now to prove that r is the largest positive integer that divides both x 

and m, we will consider another integer which divides both x and m, 

which is less than or equal to r. 

 Suppose s is a positive integer that also divides x and m. then, for 

some a and b, x = a . s and m = b . s. 

 Substituting  a . s for x and b . s form in r = c . x + d . m, we will get 

r = (c . a + d . b ) . s. 

 As r and s are both positive, c . a + d . b is also positive 

 This means that r ≥ s, since if r < s then  c . a + d . b < 1, which 

would be contradiction. 

 Observe that the set S of all positive integers y such that y = xs + mt, 

for integers s and t, is a nonempty set since x
2
 + m

2
 is in S. 

Therefore, by the well ordering property of the positive integers, 

there exists a minimal element r in S. By above Lemma, r = gcd (x, 

m) 

 

PROOF OF ABOVE STATED THEOREM:  

 

Suppose [w + x . i] = [w + x . j] and 0 ≤  j < i < m. 

For some integer y, w + x . i = w + x . j + y . m. Cancel out the w-term 

and combine the x-term, we get, 

1. x . ( i – j ) = y . m Since x and m are relatively prime, gcd (x, m) 

= 1, and , by  the preceding lemma, there exist c and d such that  

2. c . x + d . m = 1  From (1) we obtain 
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3. c . x. ( i – j ) – c . y . m = 0  From (2) we obtain 

4. c . x. ( i – j ) + d . m . ( i – j) = ( i – j)   Subtract (3) 

from (4) we obtain, 

5. m . [d . ( i – j ) + c . y ] = i – j 

 

This is a contradiction, since 0 < i – j < m implies 0 < d (i – j) + c . y < 1, 

and there is no integer between zero and one . 

 

Example 1: Let set A={ 2, 4, 6, 8, 10 } and R be a binary relation 

on A defined by 

(m,n)  R   if and only if   m  n (mod 4)    m,n  A 

 

(m,n) m-n Conclusion Is multiple of 

4? 

 

(2,2) 2-2=0 (2,2) ∈ R yes, 0 is a 

multiple of 4 

 

(2,4) 2-4=-2 (2,4) ∉ R no, -2 is not a 

multiple of 4 

 

(2,6) 2-6=-4 (2,6) ∈ R -4: yes 

 

(2,8) 2-8=-6 (2,8) ∉ R -6: no 

 

(2,10) 2-10=-8 (2,10) ∈ R -8: yes 
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(4,2) 4-2=2 (4,2) ∉ R 2: no 

 

(4,4) 4-4=0 (4,4) ∈ R 0: yes 

 

which gives explicitly 

R = { (2,2), (2,6), (2,10), (4,4), (4,8), (6,6), (6,10), (8,8), (10,10), (6,2), 

(10,2), (8,4), (10,6)} . 

This relation R can be drawn as 

 

and is obviously an equivalence relation. Note that there are 2 ``connected'' 

components, one containing elements 4 and 8 and the other, elements 2, 6 

and 10. Here the ``connection'' is made through certain walks along the 

directions of the arrows. These 2 components are just the 2 

distinct equivalence classes under the equivalence relation R. Naturally we 

may use any element in an equivalence class to represent that particular class 

which basically contains all elements that are connected to the arbitrarily 

chosen representative element. Hence, in this case, we may choose 2 to 

represent the class {2,6,10}, written simply [2]={2,6,10}, and choose for 

instance 8 to represent the other class {4,8}, that is, [8]={4,8}. Since any 

member of an equivalence class can be used to represent that 



Notes 

86 

class, [6] and[10] will be representing exactly the same equivalence class 

as [2]. Hence 

[2]   [6]   [10] = {2, 6, 10}, [4]   [8] = {4, 8}  

are the 2 distinct equivalence classes. 

 

Example 2: Let set A={ 2, 4, 6, 8, 10 } and R be a binary relation 

on A defined by 

(m,n)  R   if and only if   m   n (mod 4)     m,n ∈ A 

Solution:  

a.  As per the definition of equivalence classes, it 

implies 2 ∈ [2]={2,6,10}, 6 ∈ [6], 10 ∈ [10], 4 ∈ [4] and 8 ∈ [8]={4,8}  

b. In this case is the same as saying [2]=[6]=[10] and [4]=[8],  

c. This case  is consistent with the fact that any 2 of the equivalence 

classes [2], [4], [6], [8] and [10] are either disjoint (e.g. [2] and [4] have no 

elements in common) or exactly the same (e.g. [2]=[6]). 

d. For the equivalence class {2,6,10} implies we can use either 2 or 6 or 10 

to represent that same class, which is consistent with [2]=[6]=[10] . Similar 

observations can be made to the equivalence class {4,8}. 

 

Example 3: Show that the distinct equivalence classes in example1 form a 

partition of the set A there. 

Solution In example 4 we have shown that [2] ={2,6,10} and [4]={4,8} are 

the only distinct equivalence classes. Since A in example 4 is given by A 

={2,4,6,8,10}, we can easily verify 

(a):   A = [2] ∪ [4] ;     (b):   [2] ∩ [4] = ∅ . 

From the definition of the set partition we conclude that {[2], [4]} is a 

partition of set A. 
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Check Your Progress 2 

1. Define the following terms 

a. Greatest common divisor 

b. Relative prime 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2. What is compatibility relations 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

3. State the condition important for equivalence relations 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

4.6 ORDERING RELATIONS 

4.6.1 Poset Diagram 

 A relation R on a set A is called a partial order on A when R is 

reflexive, antisymmetric, and transitive, and then the set A is called a 

partially ordered set or a poset. 

 

 [A ; R] is used to denote A is partially ordered by the relation R . 

 ‗≤‘-It represent an arbitrary partial order on A . 

 

 The characteristic properties of a partial order can be described as 

follows: 
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U
 

o Ɐ a ϵ A,  a≤ a      

 (Reflexivity) 

o Ɐ a, b  ϵ  A, if  a ≤  b and b ≤ a, then a = b  

 (Antisymmetry) 

o Ɐ a, b, c  ϵ  A, a ≤  b and b ≤ c, then a ≤ c  

 (Transitivity) 

 

 

 Two elements a and b in A are said to be comparable under ≤ if 

either a ≤  b or  b ≤ a; otherwise they are incomparable.  

 

 If every pair of elements of A are comparable, then we say [A; ≤ ] is 

totally ordered or that A is totally ordered set or a chain.  In this 

case, the relation ≤ is called a total order. 

Example: 

1. Let U be an arbitrary set and let A = P (U) be the collection of all 

subsets of U.  

Then [P (U);    ] is a poset but if U contains more than one element, 

then P(U) is not totally ordered under set inclusion. 

If U contains the two distinct elements a and b, then P(U) contains 

two distinct elements {a} and {b} and these sets are incomparable 

under inclusion. 

 

2. If Z is the set of integers and ≤ is the usual ordering on Z, then not 

only is [Z; ≤] partially ordered, but , more than that, it is totally 

ordered. 

 

3. Another familiar poset involves the set P of positive integers and the 

relation ―divides‖ where we write x | y or if and only if x divides y or 

if and only if y = xz for some integer z. Then [P;| ] is a partially 

ordered set.  

 

POSET DIAGRAMS:  
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 On a poset diagram there is a vertex for each element of A, but 

beside that, all loops are omitted eliminating explicit representation 

of the reflexive property. 

 

 An edge is not present in poset diagram if it is implied by the 

transitivity of the relation. 

 

 If we write x < y to mean x ≤ y but x = y, then an edge connects a 

vertex x to a vertex y if and only if y covers x, that is if and only if 

there is no element z such that x < z and z < y. 

 

4.6.2 Hasse Diagram: 

Hasse diagrams are meant to present partial order relations in equivalent 

but somewhat simpler forms by removing certain deducible 

``noncritical'' parts of the relations.  

 

To construct a Hasse diagram: 

1) Construct a digraph representation of the poset (A, R) so that all arcs point 

up (except the loops). 

2) Eliminate all loops 

3) Eliminate all arcs that are redundant because of transitivity 

4) Eliminate the arrows at the ends of arcs since everything points up. 

 

Example: Construct the Hasse diagram of (P({a, b, c}),⊆ ). 

Solution: The elements of P({a, b, c}) are 

∅ 

{a}, {b}, {c} 

{a, b}, {a, c}, {b, c} 

{a, b, c} 

The digraph is 
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4 

6 

6 

2 

2 3 

12 

3 

4.6.3 Special Elements In Poset: 

Let [A; ≤] be a poset and let B be a subset of A. Then 

1. An element b ∈  B is called the least element of B if b ≤ x for all x 

∈  B. The set B can have at most one least element. For if b and b‘ 

were two least elements of B, then we would have b ≤ b‘ and b‘≤ b. 

Hence, by Antisymmetry b = b‘. 

An element b∈ B is called the greatest element of B if x ≤  b 

for all x ∈  B. The set B can have at most one greatest 

element. 

 

2. An element b ∈  B is a minimal (maximal) element of B if x < b (x > 

b) for no x in B.If the set B contains a least element b, then of course 

b is the only minimal element of B. However, if the set B contains a 

minimal element, it need not be the only minimal element of B. 

 

3. An element b ∈  A is called a lower (upper) bound of B if b ≤ x ( b 

≥ x) for all x ∈  B. 

 

4. If the set of lower bounds of B has a greatest element, then this 

element is called the greatest lower bound (glb) of B; 

Similarly if the set of upper bounds of B has a least element , then 

this element is called the least upper bound (lub) of B. 

 

Example: We will consider the following figures of Posets. 
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4 
4 

6 

3 

9 

1 

2 

2 

1 

1 

12 
3 
9 

18 

3 

4 9 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. a, b and d have a unique least element. 

 The poset of c have several minimal elements namely, 2 and 3 

 The poset of a and b have a unique greatest element 

 The poset of c has two maximal elements 12 and 18 

 The poset of d has maximum elements as 4, 6 and 9. 

 

 

Maximal and Minimal Elements 

Definition: Let (A, R) be a poset. Then a in A is a minimal element if there 

does not exist an element b in Asuch that bRa. 

 

Similarly for a maximal element. 

Note: There can be more than one minimal and maximal element in a poset. 

Example: In the above Hasse diagram, ∅ is a minimal element and {a, b, c} 

is a maximal element. 

  

Fig. a 

Fig. b 

Fig.c 
Fig.d 
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4.6.4 Well Ordered Sets: 

 A total order ≤ on a set A is well order if every nonempty subset B of 

A contains a least element. Moreover, [A; ≤] is said to be well 

ordered. 

 Since A is totally ordered set it follows that if a set B contains a 

minimal element, then B contains only one element and moreover, 

this element is a least element of B. 

 

Examples: 

1. The poset [N; ≤ ], where N is the set of nonnegative integers, is well 

ordered. In actual fact, the well ordering property of ≤ is equivalent 

to the principle of mathematical induction, and is usually taken as an 

axiom. 

 

2. On the other hand, the poset [Z; ≤ ] is not well ordered because the 

subset of negative integers does not contain a minimal element. 

 

 

3. The relation ≤ on the set Q of rational numbers is a total ordering but 

not a well ordering because some subsets of Q do not contain a 

minimal element. For example, the set P of positive rational numbers 

contains no minimal element for if x ∈ P, x / 2 < x, and x /2 ∈ P. 

 

4. Any finite totally ordered set is well ordered. 

 

Check Your Progress 3: 

1. What is Hasse Diagram? Enumerate with example 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 
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2. Explain the terms 

a. Minimal Element 

b. POSET diagram 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

4.7ENUMERATIONS: 
  

Example: A well order on the set Z of integers can be constructed by listing 

the elements of N in ascending order and then pairing the elements of Z with 

those in N in a one-to-one correspondence like  

 

ƒ: N  Z defined as follows: 

N: 0 1 2 3 4 5 6 

        

 

 

Z: 0 -1 1 -2 2 -3 3 

 

Pair the even integers in N with the positive integers of Z and the odd 

integers of N with the negative integers of Z. Then we define a new ordering 

R of Z by a R b if and only if ƒ
-1 

(a) ≤  ƒ
-1 

(b). Thus, (– 1) R (– 3) because 1 

< 5. 

 

The ƒ above is a special case of an enumeration which we will define below 

as : 

 

CONCEPT: 

 Let I be an ‗initial segment‘ of the non-negative integers. That is let I 

= {k | k ϵ N, k ≤ n} for some constant n, or let I = N. 
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 A function ƒ: I  S is an enumeration of S if ƒ is onto; that is, for 

repetition if the function is one-to-one, that is ƒ (i) = ƒ (j) only if i = 

j. 

 

 Any set that has an enumeration is said to be countable. Sets that do 

not have enumeration are said to be uncountable or nondenumerable.  

 

 The real numbers form a set which is totally ordered by ≤ but 

uncountable. 

 

 Concept of enumeration without repetition and well ordering are 

closely related. 

 

 Suppose ƒ: I  A is an enumeration of A. For each a in A, let g(a) 

be the smallest integer in I such that ƒ (n) = a. 

 

 The relation ≤ƒ defined by a ≤ƒ b if and only if g(a) ≤ g(b) is a well 

ordering of A for which each element a ∈ A has only finitely many 

elements b ∈ A such that b≤ƒ. 

 

 Conversely, if R is a well ordering of a countable set A for which 

each a ∈ A has only finitely many predecessors; that is, there are 

only finitely many elements b ∈ A such that (b, a) ∈ R, then there is 

a unique enumeration without repetition ƒ such that ≤ƒ = R. This 

enumeration is given by ƒ(0) = min (A), ƒ(i) = min (A –{ ƒ(j) | j < 

i}). 

4.8 LATTICES: 
 

Join-semi lattice:- as a posset [A; ≤ ] in which each pair of elements a and b 

of A have a least upper bound. We also call this as lub the join of a and b 

and is represented as a ∨ b.  

 



Notes 

95 

Meet-semi lattice :- as a posset in which each pair of elements a and b have 

a greatest lower bound; this glb is called the meet of a and b, and it is 

denoted by a ∧b. 

 

Thus, if c = a  ∧b. , then c satisfies: 

1. c  ≤ a and c  ≤ b   ( c is a lower bound of {a, b} ) 

2. If d ≤ a and d ≤ b, then d ≤ c ( c is the greatest lower bound of {a, 

b}) 

 

Similarly, if c = a∨b. then c should satisfies two similar properties as stated 

above after reversing the inequalities and changing the words lower bound 

to upper bound. 

 

CONCEPT: A lattice is a poset in which each pair of elements has a least 

upper bound and a greatest lower bound. In other words, a lattice is both a 

join semilattice and a meet-semilattice. 

 

Example: 

1. If U is any set, [P (U) ; ⊆] is a lattice in which the least upper bound 

of two subsets B and C of U is just B ∪ C and the greatest lower 

bound of {B, C} is B ∩C. 

 

 

PROOF: We know that B ∩ C ⊆ B and B ∩ C ⊆C so that B ∩ C is a 

lower bound of {B, C}.  

 

On the other hand, if D ⊆ B and D ⊆C, then D ⊆ B ∩  C. Thus, B ∩ 

C is the greatest lower bound of {B,C}. 

 

Similarly we get B ∪ C is the lub of {B, C} 

 

2. Any totally ordered set is a lattice in which a ˅ b is simply the 

greater and a ˄ b is the lesser of a and b. For example, If R is the set 
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of real numbers with the usual ordering ≤, then a ˅ b = max {a , b} 

and a ˄  b = min {a, b}. 

3. The poset [P; |], where P is the set of positive integers, is a lattice in 

which a ˄ b = gcd (a, b) and a˅ b = lcm (a, b) where gcd and lcm 

respectively stand for greatest common divisor and least common 

multiple. For instance, 6 ˄9 = 3 and 6 ˅9  = 18. 

 

Example: 

1. Find the glb and lub of the sets {3,9,12} and {1,2,4,5,10} if they 

exist in the poset (Z+,|). 

• glb=3  glb = 1 

• lub=36  lub = 20 

 

 

4.9APPLICATION: STRINGS AND 

ORDERING ON STRINGS: 
  

Let ∑ be any finite set. A finite sequence of zero or more elements chosen 

from ∑ is a string over ∑ . In this context, ∑ is called an alphabet. The 

length of string w is denoted by |w|. The string of the length 0 is denoted by 

⋀and called the null string. 

 

The set of all strings of length k is denoted by ∑
k
. That is, 

∑0 = { ⋀}, and  

 

∑
k + 1

 = {w a| w ∈ ∑
k
 and a ∈∑} for k ≥ 0. 

 

∑ ⋃ ∑   
    

 
 , denoting the set of all strings over ∑. 

 

∑ ⋃ ∑       
 
 , denoting the set of all non-null strings over ∑. 

 

Thus, for every w ϵ ∑
k 
, |w | = k. 
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[wy denotes the catenation(Arrange in a series of rings or chains) of strings 

w and y].  

If w = w1 … wnandy = y1 … ym, wy = w1 … wny1 … ym) 

 

4.9.1 Lexicographic Order 

Example : If ∑ = {A, E, I, O, U}, ∑* includes all the words that can be 

written with vowels and in  particular ∑
6
 includes the string ―VOWELS.‖ 

There is another type of ordering called lexicographic ordering that is 

generally used in searching words from a dictionaries and indices of books 

and it is defined by extending a given total ordering ≤A on the alphabet A to 

a total ordering  ≤L on A* as follows: 

Let a and b be any two strings in A*. Without loss of generality, suppose | a | 

≤ | b |. Let γ be the longest common prefix of a and b that is the longest 

string such that γw = a and γz = b for some w and z in A*. There are three 

cases, exactly one of which hold: 

 

1. W = z = V     (a and b are identical); 

2. W=    V  and z = V (a is proper prefix of b); 

3. W = xα, z= y β,  x = y; x , y ϵ A, and α, β ϵ A*. 

 

The relationship between a and b is defined in each case as follows: 

1. a ≤L b and b ≤L a ; 

2. a ≤L b and b ≰ a; 

3. If x ≤A y then a ≰ b and b ≤L a; else a ≰  b and b ≰ a; 

 

THEOREM: Given any finite alphabet A and any total ordering ≤A on A, 

the lexicographic ordering ≤L defined by extending ≤A is a total ordering on 

A*. 

 

PROOF: 
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≤L is reflexive and antisymmetricfrom the above definition. So now we have 

to prove that the relation is transitive. 

Our main focus is to prove that x1 ≤L x2  and x2 ≤L x3 implies x1 ≤L x3. We 

have to deal with nine cases, that can be labelled as (i, j) ,  

where (i) is the case by which x1 ≤L x2   and  

(j) is the case by which x2 ≤L x3 . 

 

Case 1: (1, 1), (1, 2), (1, 3) . In all these cases x1 = x2 . By substituting x1 for 

x2 in x2 ≤L x3  we obtain x1 ≤L x3 which we are interested  to prove. 

 

Case 2: (2, 1) , (3, 1). In these cases x2 = x3 . By substituting x3 for x2 in x1 

≤L x2  we again obtain x1 ≤L x3. 

 

Case 3: (2, 2). In this case x2 = x1 z1 and x3 = x2 z2. By substituting x1 z1 for 

x2  in x3 = x2 z2 we get 

x3 = x1 z1 z2 which satisfies case 2 of the definition of ≤L. Thus, x1 ≤L  x3. 

 

Case 4 : (2, 3)  In this case x2 = x1 z = γ a α,  x3 = γ b β and a ≤A  b. 

o There are two subcases , depending on whether a falls in x1 or in z.  

o If a falls in x1 then x1 is divided into x1 = γ a δ for some δ, and so 

case 3 of the definition gives x1 ≤L  x3.  

o If a falls in z, then x1  is a prefix of x3 and  x1 ≤L  x3. by  case 2 of the 

definition of ≤L  . 

 

Case 5:  (3, 2) In this case x1  = γ a α , x2 = γ b β,  a < b, and x3 = x2 z.  

Since x3 = γ b β z it follows that  x1 ≤L  x3. by case 3 of the definition. 

 

Case  6: (3, 3)  In this case x1  = γ1 a1 α1 , x2 = γ1 b1 β1 = γ2 a2 α2 , x3 = γ2 b2 

β2,  a1< b1 and a2< b2 

There are three subcases, depending on whether  a2 falls in γ1 b1 and β1. 

o If a2 occurs as a part of γ1 , then x1  = γ2 a2 α3, and so x1 ≤L  x3 by case 

3. 
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o If a2 falls in b1 then γ1 = γ2, a1 ≤A b1 = a2 ≤A b2 and so x1 ≤L  x3 by case 

3. 

o If a2 falls in β1  then , x3 = γ1 b1 β3 for some β3 , so that  x1 ≤L  x3 by 

case 3. 

 

In each case we have shown that x1 ≤L x2  and x2 ≤L x3 implies x1 ≤L x3 so that 

≤L  is transitive. 

Hence, proved. 

 

A* - The enumeration ordering and is denoted as ≤E  --In this strings of 

unequal length are ordered by length, and strings of equal length are ordered 

exactly as they are by ≤L  . For example, if A = {a, b}, the enumeration of A* 

is  

 ⋀ , b, aa, ab, ba, bb, aaa, aab, aba, abb, 

baa, …  

 

Example:  

1. Arrange the following strings into ascending order according to the 

definition of lexicographic ordering 

 AND, ANT, AN, BAN, BALL, BAND, CAR, CART 

 AN, AND,ANT,BAN, BALL, BAND, CAR, CART 

 

2. Arrange the above into ascending order according to the definition of 

the enumeration ordering. 

  AN, AND, ANT, BAN, CAR, BALL, BAND, 

CART 

 

3. Suppose A has an n elements. How many strings are there in A
k
? 

 n
k
 

 

4. List all the elements of {a, b}
3.
 

 aaa, aab, aba, abb, baa, bab, bba, bbb 
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5. List all the elements of  {a, b, c}
3
 ∩ {b, c}* 

 bbb, bbc, bcb, bcc, cbb, cbc, ccb, ccc. 

Check Your Progress 4 

1. What is Lattice and define Join-semilattice? 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

 

2. Explain the concept of lexicographic ordering 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

4.10 LET’S SUM  UP 
 

It has got wide application in scheduling of system tasks, represent a 

network of processing elements, helps to represent casual relations between 

events, used extensively in Genealogy and version history and also used for 

compact representation of a sequences i.e. data compression. 

 

4.11 KEYWORDS 
 

1. Catenation- Arrange in a series of rings or chains 

2. The order of a digraph G is the number of vertices  

3. Self-loop -  is an edge that connects a vertex to itself. 

4. The outdegree of a vertex is the number of edges pointing from it. 

5. The indegree of a vertex is the number of edges pointing to it. 

 

4.12 QUESTION FOR REVIEW 
 



Notes 

101 

1. Draw the digraph for the relation ⊆ on all the nonempty subsets of the set 

{0, 1, 2} 

2. Show that if      for some non-negative k and y is odd, then x and y 

are relatively prime. 

3. Prove that the rational numbers are countable. 

4.  Let A = {1, 2, 3, 4}. Which ordered pairsLet A = {1, 2, 3, 4}. Which 

ordered pairs are in the relation R = {(a, b) | a < b} ?are in the relation R = 

{(a, b) | a < b}  
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Structures with Applications to Computer   Science, McGraw 

Hill Book Co. 1997 

13. S. Witala, Discrete Mathematics - A Unified Approach, 
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4.14 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Explain the concept of Digraph and example – 4.1 & explain the 

transitive property with representation– 4.2 

2. Explain the concept and one related lemma and example – 4.3 

3. State the concept – 4.5.2 

4. Explain the concept – 4.4.1 

5. Explain the concept – 4.4 & state the condition important for 

equivalence relation 

6. Explain the concept in 4.6.2 

7. Explain Poset diagram concept with example --4.6 & and minimal 

element --4.6.4 

8. D 

9. Explain the concept  with example – 4.9.1 & explain the concept of  

lattice and join semi lattice-– 4.8 
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UNIT 5 : RELATIONS AND 

DIAGRAPHS II 
 

STRUCTURE 

 

5.0 Objectives 

5.1 Operations on Relations 

 5.1.1 n-ary Relations 

 5.1.2 Join of Relations 

 5.1.3 Inverse of Relations 

 5.1.4 Composition of Relations 

5.1.5 Transitive Closure of Relation 

5.2 Paths and Closures 

5.3 Directed Graphs and Adjacency Matrix 

5.4 Transitive Closure: Warshall's Algorithm 

5.5 Let‘s sum up 

5.6 Keywords 

5.7 Question for review 

 5.8 Suggested Reading 

5.9 Answer to check your progress 

5.0 OBJECTIVES 
 Different Operation on Relations 

 Concept of Paths & Closures 

 Directed Graph and Adjacency Matrix 

 Boolean Matrices and Inner Product 

 

5.1 OPERATIONS ON RELATIONS: 
 

 There are certain operations on sets that can also be applied on 

relations and no further concept or definition is required for the same 

like complement, union, intersection, difference.  

 Suppose Ris the proper subset of A1 ×… × An then  
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 Complement of R is R = (A1 ×… × An)  -  R 

 We can also consider the relationships between the usual ordering 

relations like ≤ . We can say that ≤ is union of the relation < and  =; 

the relation < is the relation obtained from ≤ minus =. 

 

5.1.1 N-Ary RELATIONS: 

CONCEPT: Let R ⊆A1 ×… × An be an n-ary relation and lets1, s2  , … , sk 

be a subsequence of the component position 1, … , n of R.  

The projection of R with respect to s1, s2  , … , sk  is the k-ary relation. 

{( x1  , … , xk  ) | (x1  , … , xk  )  = (as1  , … , ask ) for some (a1  , … , an) ϵ R} 

 

Example: If R  {a, b, c }
3
 is the set of ordered triples {(a,a,a), (a, b ,c), (b, b, 

c), (a,a, c), (b, a, c),(b, c, c),(a, c, c)}. 

The projection of R with respect to the first and third components is the 

binary relation { (a, a) , (a, c) , (b, c) }. 

In this case the projection of R  with respect to the first component is the 

unary relation (i.e. the set) {a, b}. 

 

5.1.2 Join of Relations 

CONCEPT: Let R1⊆A1 ×A2 ×… ×An and R2⊆B1 × B2 ×… × Bm be relations 

and suppose Ai = Bj for some i = j.  

The join of R1 and R2 with respect to component i of R1 and component j of 

R2  is the relation 

  

 {( a1  , … , an , b1  , … , bn) | (a1  , … , an) ϵ R1 , (b1  , … , bn) ϵ R2 

, and ai = bj} 

 

Example: Suppose R1  = {(a, b), (a, c), (b , a) ⊆ (a, b, c)
2
}  and  R2  = {(a, b, 

x), (c, a, y), (a, a, x) , (a, c, x) ⊆(a, b, c)
2 
× (x, y)}  . 
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Then the join of R1 and R2 with respect to the first component of R1and the 

second component of R2 is the relation 

 

 {(a, b, c, a, y), (a, b ,a, a, x), (a, c, c, a, y), (a, c, a, a, x), (b, a, a, 

b, x)} 

 

5.1.3 Inverse Of Relations: 

CONCEPT: Suppose R⊆A   B. the inverse of R, denoted by R
 – 1

, is the 

relation {(y, x) | (x, y) ∈ R}. 

 

Example: The inverse of the relation R = {(x, y), (y, z), (z, y), (z, x) }is the 

relation {(y, x), (z, y), (y, z), (x, z)} which can be shown in diagraphs as 

follows: 

 

 

 

 

 R       R
 – 1

 

In the above digraphs of the inverse of a relation has exactly the edges of the 

digraph of the original relation, but the directions of the edges are reversed. 

 

5.1.4 Composition Of Relation: 

CONCEPT: Suppose R1  ⊆A ×B and R2⊆B × C. the composition of  R1 and 

R2 denoted by R1. R2 is the relation {(x, z) | (x, y) ∈ R1 and (y, z) ∈ R2 } 

 

Example: The composition of   R1. R2of the relation  R1 = { (a, a), (a, b), (c, 

b) } and R2 = { (a, a), (b, c), (b, d) } is the relation {(a, a), (a, c) (a, d), (c, c), 

(c, d)}. These relation are shown below: 
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d 

d 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[NOTE: Composition of relation is associative, That is if R, S, T are 

relations then (RS) T = R (ST) 

The notation R
k
 is used for the iterated composition of R with itself which 

means R
1
 = R, and R

k+1
 = R

k 
. R for k ≥ 1.] 

 

5.1.5 Transitive Closure 

CONCEPT: Suppose R⊆A × A. The transitive closure of R, denoted by R
+
 

is R U R
2
 U R

3
… = U k ≥ 1 R

k
.  

The Transitive reflexive closure of R denoted by R*, is R
+
 U {(a, a) | a ϵ A}. 
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Example: The transitive closure R
+ 

of the relation R = {(a, b), (b, c), (c, d)} 

is the relation {(a, b) , (a, c), (a, d), (b, c), (b, d), (c, d)}.This is shown below 

in the digraphs: 

 

 

 

 

 

 

 

R       R
+ 

 

THEOREM: R
+ 

  is the smallest relation containing R that is transitive. 

 

PROOF: 

o First we will prove that R
+ 

 is transitive. 

o Suppose x R
+ 

 y and y R
+ 

  z. Then, since R
+ 

= U k ≥ 1 R
k
 ,  x R

i 
 y and 

y R
j 
 z for some i, j ≥ 1. Thus, x R

i + j 
z and so x R

+ 
 z. 

o Suppose R ⊆Q and Q is transitive. Suppose R
k⊆Q.  Then, since R 

⊆Q and Q is transitive, R ⊆ Q. Thus, by induction on k, R ⊆Q for 

every k ≥ 1, and so R ⊆Q. 

o Similarly, the transitive reflexive closure of a binary relation is the 

smallest relation that contains it and is both transitive and reflexive.  

o For example, the symmetry property says that if R includes a pair (x, 

y) then R must also include (y, x).  

o The symmetric closure of a relation R is thus the set R U R
-1

, which 

is the smallest symmetric relation that includes R. 

o In general if P is a property such that P can be made true for any set 

by adding certain elements to the set, we can call P a closure 
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property and define the P-closure of  a set to be the smallest set that 

contains it and satisfies property P. 

 

[NOTE: ∑
+ 

- the set of all non-null character strings over alphabet ∑, 

is another example of such a closure. 

If x and y are elements of ∑
+
 then xy is an element of ∑

+
.] 

 

Example:  

1 . Let P ={ (x, y, x .y) | x and y are integers} and Q = {(x,x,z) | x and z are 

integers}. 

a. What is P ∩ Q? 

{(x, x, x
2
) | x is an integer}. 

b. What is the projection of P ∩ Q with respect to the first and third 

components? 

{(x, x
2
) | x is an integer}. 

 

c. Let R be the join of P and {1, 3} with respect to the first component of P. 

Describe R 

{(1, y, 1 . y, 1) | y is an integers} U {(3, y, 3 . y, 3) | y is an integer} 

 

d. Let T be the join of R and {5} with respect to the second component of 

R. Describe T. 

 

{(1, 5, 5, 1, 5), (3, 5, 15, 3, 5)} 

 

e. What is the projection of T with respect to the third component? 

{ 5, 15} 

 

2. Let R = {(x, y) | x = y. z for some z greater than one, and x, y, z are 

positive integers} 

a. What is R ∩ R
-1 

? Is R symmetric? Reflexive? 

The intersection is empty. The relation R is not symmetric, 

nor is it reflexive. 



Notes 

109 

  

b. Prove that R ⊆R . R. What is the transitive closure of R? 

If x = y. a and y = z .b then x = z . (b . a). If a and b are 

greater than one , then so is b .  a. The relation R is its own 

transitive closure, since it is already transitive. 

 

c. What is the projection of R with respect to the first component? 

The projection of R with respect to the first component is the 

set of integers ≥  

Check Your Progress 1 

1. What is join of Relation? 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

 

2. Explain Transitive Closure. 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 
 

5.2 PATHS AND CLOSURES 
 

CONCEPT:  

 A directed path in a digraph A = (V, E) is a sequence of zero or 

more edges e1, …, en  in E such that for each 2 ≤ i ≤ n, ei- 1 is to the 

vertex that is, ei may be written as (vi - 1 , vi) for each 1 ≤ i ≤ n. 

 

 Such a path is said to be from v0 to vn, and its length is n.  

 

 In this case v0 and to vn are called endpoints of the path. 
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 A non-directed path in G is a sequence of zero or more edges e1, 

…, en  in E for which there is a sequence of vertices v0, …, vn  such 

that ei =  (vi - 1 , vi) or ei =  (vi, vi - 1) for each 1 ≤ i ≤ n. 

 

 A path is simple if all edges and vertices on the path are distinct, 

except that v0 and  vn may be equal.  

 

 A path of length ≥ 1 with no repeated edges and whose endpoints are 

equal is a circuit. 

 

 A simple circuit is called a cycle. 

 

[NOTE: The definition of Simple, circuit and cycle apply equally to directed 

and non-directed paths 

A path of length zero is permitted, but it does not have a unique pair of 

endpoints. Such a path has no edges and can be viewed as being from a 

vertex to itself.] 

 

 A path e1, …, en  is said to transverse a vertex x if one (or more) of 

the ei is to or from x and x is not serving as one of the endpoints of 

the path or more precisely, if ei = (x, y), then 2 ≤ i ≤ n, or if ei = (y, x) 

, then 1≤  i  ≤ n – 1 . 

 

Example: 

 

 

 

 

 

 

 

A directed graph with paths 
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From the above figure we can observe: 

o There are two simple directed paths from a to d which are (a, b), (b , 

c), (c, d), and (a, c), (c, d). 

o Simple non directed paths from a to d:- (a, b) and (b, d). 

o Non trivial directed cycles:- (a, b), (b, c), (c, d), (d, e), (e, a) 

o Non directed cycles which includes all directed cycles + (a, b), (b, c), 

(c, a) 

 

THEOREM: If A =(V, E) is a digraph, then for n ≥ 1, (x, y) ϵ E
n
 if and only 

if there is a directed path of length n from x toy in A. 

 

PROOF: 

For n = 1, E
n 
= E. The definition of the path guarantees that (x, y) ϵ E if and 

only if there is a path 1 from x to y, since a path of length 1 is an edge of A. 

For n > 1, we assume the theorem is true for n – 1, and divide the proof into 

two parts: 

 

I. Suppose (v0, v1) , …, (vn – 1 , vn )   is a directed path from v0 to vn 

. Then (v0,  vn – 1 )ϵ E
n – 1 

, by induction.  

By definition E
n
  = E

n – 1 
 . E, and , and(vn – 1 , vn ) ϵ E, so that (v0, 

vn) ϵ E
n
. 

 

II. Suppose (v0, vn) ϵ E
n
. Then since E

n
  = E

n – 1 
 . E, there exist some 

vn – 1 such that     (v0,  vn – 1 )ϵ E
n – 1 

and(vn – 1 , vn ) ϵ E.  

By the inductive hypothesis, there is directed path (v0, v1) , …, 

(vn – 2 , vn- 1 )   of length n – 1 from  v0 tovn - 1. Adding (vn – 1 , vn )    

to this path gives the path of length n desired. 

 

ADD-ONS: If there is non-trivial directed path from a vertex x to 

a vertex y there must be an edge directly from x to y. 

If A = ( V, E) is a digraph then E is transitive if and only if every 

directed path in A has a ―short-cut‖. 
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COROLLARY: If A = (V, E) is a digraph then for any two 

vertices x and y in V, (x, y) ϵ E
+ 

if and only if there is nontrivial 

directed path from x to y in A. 

 

PROOF: From previous theorem, we know that if there is a 

directed path from x to y in A of some length n ≥ 1, then (x, y) ϵ 

E
n
, so that (x, y) ϵ E

+ 
. 

Conversely, if (x, y) ϵ E
+ 

, then (x, y) ϵ E
n
, for some n ≥ 1 and 

thus we can say that there is a directed path from x to y of length 

n. 

 

Example: Let A ={ a, b, c, d, e} and let R = { (a, a), (a, b), (b, c), 

(c, d), (c, e) ,(d, e)}. 

From the definition of transitive closure since, R 
+ 

Uk ≥ 1 R
k
 we 

need to compute R
k
 for each k, and take their union. By the 

definition of composition, we get 

 R
2
 = { (a, a), (a, b),(a, c), (b, e), (b, d), (c, e)} 

 R
3
 = { (a, a), (a, b),(a, c), (a, d), (a, e), (b, e)} 

 R
4
 = { (a, a), (a, b),(a, c), (a, d), (a, e)} 

 R
5
 = { (a, a), (a, b),(a, c), (a, d), (a, e)} 

 

We can see from above that R
4
 = R

5
 so it will follow that  R

4
 = 

R
5
=R

6
 = R

5
 for all k ≥ 4. 

Thus, R
k
 is just the union of these sets, so that 

R
k 
 = {(a, a), (a, b),(a, c), (a, d), (a, e), (b, c) , (b, d), (b, e),(c, 

d),(c, e), (d, e)}. 

 

CONCEPT:  

 A pair of vertices in a digraph is weakly connected if there is 

a non- directed path between them.  
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 They are unilaterally connected if there is a directed path 

between them. 

 

 They are strongly connected if there is a directed path from 

x to y and a directed path from y to x. 

 

 A subgraph of A
1
 of a graph A is a(weakly, unilaterally, 

strongly) connected component if it is a maximal (weakly, 

unilaterally, strongly) connected subgraph. 

Example:  

 

 

 

 

 

 A graph illustrating connectivities 

 

 The above graph comprises of vertices { a,b,c, d,e,f, g} and their 

incident edges, is not even weakly connected. 

 The subgraph comprising of vertices {a, b, c} and the edges {(a, b), 

(c, b)} is weakly connected, but not connected by either of the 

stronger definitions, since there is no directed path between a and c. 

 The subgraph consists of vertices {d, e, f, g} and their incident edges 

is unilaterally connected, but not strongly connected, as there is no 

directed path from e to d. 

 {e, f, g} – vertices of nontrivial strongly connected subgraph & its 

edges are {(g, e),(e, f), (f, g)}. 

 Two subgraph with a vertex sets {a, b, c} and {d, e, f, g} has two 

weakly connected components. 
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 Individual vertices – a, b , c and d  and the subgraph {(e, f, g)} ,{(e, 

f), (f, g), (g, e)} – strongly connected components. 

 Unilateral connected components – {(a, b), (b, a)} and {(b, c), (c, 

b)}. 

 

5.3 DIRECTED GRAPH AND ADJACENCY 

MATRICES: 
 

CONCEPT: Let S be any set and m, n be any positive integers. An m   n 

matrix over S is a two dimensional rectangular array elements with m rows 

and n columns. 

The elements are doubly indexed with the first index indicating the row 

number and the second indicating the column number as illustrated below: 

 Column 1 Column 2 … Column 

n 

               Row 1 A(1, 1)  A(1, 2)  … A(1, n) 

                 Row 2 A(2, 1) A(2, 2)  … A(2, n) 

A =               . .      .       . 

                     . .      .       . 

                     . .      .       . 

               Row m   A (m, 1) A(m, 2) … A(m, n) 

 

Boolean Matrices- These are the matrices over the set {0, 1}. There is a 

natural one –to-one correspondence between the binary relations and the 

square Boolean matrices. 

CONCEPT: Let E be any binary relation on a finite set V = {v1, …, vn}. 

The adjacency matrix of E is the  n × n Boolean matrix A defined by A(i, j) 

= 1 if and only if (vi, vj ) ϵ E.  
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NOTE: the interpretation of adjacency matrices depends on the presumed 

ordering of the set V. 

Example: The relation ≤ on the set {0,1, 2, 3, 4} is represented by the 

adjacency matrix 

[
 
 
 
 
   
   
   

   
   
   

                         
                         ]

 
 
 
 

 

  

All diagonal entries in the above matrix is 1. This is because the relation ≤ is 

reflexive and it is true for every reflexive relation. 

 

Example: The digraph below can be represented by the adjacency matrix as 

follows: 

  

 

 

 

[
 
 
 
 
   
   
   

   
   
   

                         
                         ]

 
 
 
 

 

 

CONCEPT: Let S be any set and let    and   be any two binary operators 

defined on the elements of S. Assume that  is associative. The inner 

product of   and  , denoted by     is defined for n × n matrices over S 

by A    B = D such that 

D(i, j) = [A(i, 1)     B (1, j)]  … [A(i, n)  B(n, j)] 
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We can write (   ) 
k 
A to denote the matrix A in the case that k = 1 and for 

k > 1 to denote the matrix [(   )
k – 1 

A    A]. 

For any single scalar operator   we will also write A  B for matrices A 

and B to denote the matrix E such that  

 E(i, j) = A(i,j)   B(i, j) 

NOTE: In the above case the inner product is the usual definition of matrix 

product. 

 

Example: Let S be the set {0, 1} and let    and   be the operators OR and 

AND defined by the table: 

 

 

 

 

 

 

Let A and B be the matrix in the previous two above example of Adjacency 

matrix. 

The inner product A OR . AND B is the matrix 

[
 
 
 
 
   
   
   

   
   
   

                         
                         ]

 
 
 
 

 

 

We will clarify how we had obtain these elements of the matrix.  

 

x y x OR y x AND y 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 1 1 
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 Consider entry in row 2 and column 2 - it is obtained from the 

second row of A and second column of B, and is (0 AND 1) OR (1 

AND 0) OR (1 AND 0) OR (1 AND 1) OR (1 AND 0) = 1. 

 

 The entry in row 2 and column 3 is obtained from the second row of 

A and the third column of B, (0 AND 1) OR (0 AND 1) OR (1 AND 

1) OR(0 AND 0) OR (0 AND 0) = 1. 

 

CONCEPT: When the two operations    and  are the particular 

operations of OR and AND respectively, then we can refer to the inner 

product as Boolean Product. 

 

THEOREM: Let RA and RB be binary relation on a set V = {v1…vn}, 

represented by adjacency matrices A and B respectively. Then the Boolean 

Product A OR . AND B is the adjacency matrix of the relation  
     and the 

matrix (OR . AND)
n
 A is the adjacency matrix of the relation RA. Here (OR . 

AND)
2
A means A OR . AND A. 

 

PROOF: 

RA . RB =  Rc where   Rc  = { (vi , vk) | (vi , vj) ϵ RA and (vj , vk)  ϵ RB  for 

some j}. Thus if C is adjacency matrix of Rc then  C (i, k) = 1 if and only if 

for some j, A (vi , vj) = 1 and A (vj , vk) = 1.  

It is same like if we say C (i, k) =[ A(i, 1) AND B (1, j) ] OR …OR [A(i, 

n)AND B (n, j) ] which is (A OR . AND B) (i, j).  

The theorem is the direct consequence of the definitions. 

 

COROLLARY: Let A be the adjacency matrix of any binary relation R on 

a set V = {v1 , …, vn}. Then the adjacency matrix of the transitive closure R
+
 

is given by A OR (OR . AND)
2
 OR … OR (OR .AND )

n
 A. 

 

PROOF: It follows from the above theorem and R
+ 

 = R U R
2
 U  … U R

n
 . 

 

THEOREM: 
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Suppose G = (V, E) is a directed graph and A is its adjacency matrix. Let 

 and  denote the operations. 

    {
             
              

 

 

    {
                       
                                   

 

   {
                                                       

                                
 

  

Then L
 k 

(i, j) is the length of the longest non trivial directed path from vi  to 

vj that has length ≤ k, unless L
 k 

(i, j) = 0, in which case no such path exists. 

 

PROOF: The proof is by induction on k. For k = 1 we have L
 k 

= A. Since A 

(i, j) =1 if and only if  there is a directed path of length 1 from vi  to vj, the 

conclusion follows directly from the definition of adjacency matrix.  

For k > 1 we can assume the theorem holds for smaller values of  

k. L
 k 

(i, j) = L
 k- 1 

(i, k)  [ L
 k- 1 

(i, 1)  A (1, j)]  … [L
 k- 1 

(i, n)  A (n, 

j)]. 

 

In other words L
 k 

(i, j) is the maximum of L
 k 

(i, j) and all of L
 k - 1

(i, t)   A 

(t, j) for 1 ≤ t ≤ n.  

 

We will consider two cases. 

Case 1: Suppose there is nontrivial directed path from vi  to vj of length ≤ k. 

o We will prove that L
 k- 1 

(i, j)  and  L
 k - 1

(i, t)   A (t, j) are zero in this 

case. 

o Let L
 k- 1 

(i, j)  is nonzero, then by induction there is nontrivial path of 

length ≤ k – 1  from vi  to vj 
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o If L
 k - 1

(i, t) A (t, j) is nonzero for some t , then by induction there is 

directed path from vi  to vj  and an edge from vi  to vj that can be 

combined to form a directed path of length ≤ k from vi  to vj. 

 

Case 2: Suppose there is nontrivial directed path from vi  to vj of length 

≤ k. 

 

o We will choose one path of maximum length. Let l be the length 

of this path and  (vi , vj) be the last edge on it. 

 

o By definition of adjacency matrix, A(t, j) = 1. We will consider 

subcases whether l is greater than 1. 

 

o If l = 1, since we are considering that k > 1, and as we consider  l  

as length of the  longest path of length ≤ k – 1 and so by 

induction L
 k- 1 

(i, j)  = 1. 

 

o It implies L
 k- 1 

(i, j) is at least 1. 

 

o But it can happen one of the L
 k - 1

(i, t) A (t, j) is greater. 

 

o Suppose that  L
 k - 1

(i, t)  A (t, j) is non zero 

 

o So from case 1there must be directed path from vi  to vj  of length 

> 1 and ≤ k which would be longer than l that is a contradiction. 

 

o Thus, L
 k- 1 

(i, j) = 1. 

 

o If l> 1, there is nontrivial directed path from vi  to vt of length l – 

1. 
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o But there cannot be any directed path from vi  to vt  longer than l 

– 1 and shorter than k, if we try to figure out some path longer 

than l than it is a contradiction to the definition of l. 

 

o Thus by induction L
 k - 1

(i, t) =  l – 1 , so we have  

 

      L
 k - 1

(i, t)  A (t, j)  = l Thus L
 k 

(i, j)   is at least l. 

 

o Suppose L
 k 

(i, j) is greater than l which leads to  L
 k- 1 

(i, j) is 

greater than l or some term   L
 k - 1

(i, t)   A (t, j)>l which again 

contradicts the definition. 

 

o If L
 k - 1

(i, t)   A (t, j)>l, L
 k- 1 

(i, t)   >l – 1 so by induction there 

must be a path of length L
 k- 1 

(i, t) from  vi  to vj   and this must 

not be longer than k – 1. 

 

o Such a path could be joined with (vi, vj) to obtain a path greater 

than l and ≤ k from which is a contradiction. 

 

o We proved that L
 k 

(i, j)  = l. 

5.4 WARSHALL’S ALGORITHM: 
 

Computing the Transitive Closure:  

Input: The adjacency matrix of a digraph (V, E) 

Output: A new adjacency matrix M, which is the adjacency matrix of (V, E
+
)  

Method: For each k from 1 up to n 

For each pair (i, j) such that         do the following 

(*) If M(i, k) = 1, M(k, j) = 1, and M(i, j)=0 then change M(i, j) to 1. 

The below figure represents the basic idea of Warshall‘s algorithm. 

 

Observation:  
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From figure, there is a path from vertex    to    that traverses only vertices 

in         . There are two possibilities one is that the path may traverse 

only vertices in            or;it traverses only vertices in            to 

get to    for the first time, may visit    several more times via subpaths that 

traverse only vertices in            and finally reaches    via a subpath 

that traverses only vertices in           . 

Other way round, for each vertex    and all paths through it the main loop 

of the algorithm considers all of the possible two –step paths from    to    

that go into and out of    . The algorithm will build a bypass         unless 

no such bypass already exist. 

At last each vertex is bypassed which means that for each path in the 

original graph there will be direct connection (edge) in the result. 

Let M0 denote the initial matrix M. Let Mk denote the matrix at the end of 

the k
th

 stage. Note no entry of M is ever set to 0 so that           implies 

that           . 

Basically we want to prove that Mn is adjacency matrix of (V, E
+
) and for 

this, refer the following two theorems. 

 

 

 

THEOREM 1: Mk(i, j) = 1 if there is a nontrivial directed path from    to    

that traverses only vertices in {  , …,   } 

To prove this theorem we need a lemma. 

 

Warshall’s Algorithm 
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LEMMA: If there is a directed path in a diagraph from vertex a to vertex b 

and S is the set of vertices traversed by this path, then from any vertex c in S 

there exist directed paths from a to c and from c to b such that each traverses 

only vertices in S– {c} 

Proof:  

o Suppose S is non-empty and c is an element of S.If   ∅, the lemma 

is trivially true, since there is no vertex c inS.  

o Let         be a directed path from a to b that traverses exactly the 

vertices in S.  

o By the definition of traverse, there is at least one edge    in the path 

that is incident to c.  

o Let   be the first edge on the path that is incident to c and let    be 

that last edge that is incident from c. 

o We are aware that from definition of path          and          

for some x and y. 

o So,         is a path from a to c and         is a path from c to b 

and neither of these traverses c.  

o Both paths are sub paths of         so they traverses only vertices 

in S– {c} 

 

Proof of Theorem:We are using induction method on k for proof. 

When k = 0 then           if (     ) is in E. 

Assume the theorem is true for smaller value of k. Let there is a nontrivial 

directed path from   to    that traverse vertices only in           

From the above lemma there is a possibility of either a nontrivial directed 

path from   to    that traverses only vertices in             or there is a 

nontrivial paths from   to    and from   to    using only vertices in 

           . 

In the first case by the inductive hypothesis,             and in second 

case         is set to 1 by the algorithm. 

If we put k =n we can have an immediate corollary. 
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COROLLARY: if there is non-trivial directed path from   to    in (V, E), 

then           where n = |V| 

 

THEOREM 2:If          at any time during the execution of the 

algorithm, there is a non-trivial directed path from   to   in (V, E). 

 

NOTE: The step (*) is performed repeatedly, for different values of i, j and k 

in some order. Time ‗t‘ means that step (*) is performed t times, time 0 is 

before the step (*) has been performed at all and time 1 is just after it has 

been performed once and so on. 

PROOF:  

Assume         .We will use induction on time ‗t‘ at which entry 

       is first set to 1. 

The algorithm never changes        to 0 that happens at most once for 

each pair (i, j). 

For t = 0, we have original adjacency matrix, if          at time t = 0 so  

        is an edge in E is true. 

For t > 0, at time t entry        is changed from 0 to 1. Then at time t – 1 

then for the current value of k          and          is true. 

There must be a non-trivial directed paths from   to    and from   to    by 

induction and thus joining these paths at   we will have a nontrivial directed 

path from   to   . 

 

Application of Warshall Algorithm: 

We will first consider the adjacency matrix of relation R i.e. M0 and then 

construct successively other matrices like M1, M2, …, Mn where n is the 

number of vertices for the relation R. 

Condition (*) is very useful in constructing the Mk in terms of previously 

constructed Mk – 1for each k ≥ 0 i.e. we can obtain Mk(i, j) the (i, j) entry of 

Mk, from certain entries of Mk – 1. For instance, if Mk – 1(i, j) = 1 then Mk(i, 

j) = 1 also which means every entry of Mk – 1is a 1 remains a 1 in Mk. If Mk – 
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a a c b b c d 
d 

1(i, j) = 0, then we get a new 1 in a position (i, j) of Mkonly if there were 

ones in a positions (i, k) and (k, j) ofMk – 1.  

In other way, Mk(i, j) = 1 if Mk-1(i, k) = 1 and Mk-1(k, j) = 1. Thus, if Mk-1(i, 

j) = 0, so column k  and row k of Mk – 1need to be examined and if there is a 

1 in position i of column kand 1 in position j of row k, a 1 will be entered in 

position (i, j) ofMk.  

The following expression describes it following 

                 ∨           ∧            

 

Thus, we may construct MkfromMk-1 by employing the following procedure. 

Step 1: First transfer all 1‘s of Mk-1 toMk 

Step 2:In column k of Mk-1 where entry is 1 record all the positions p1,p2,… 

and in row k of Mk-1 where entry is 1 record all the positions q1,q2,… 

Step 3: Put a 1 in each position (ps, qt) of Mk 

 

Example:Using Warshall‘s algorithmcompute the adjacency matrix of the 

transitive closure (V, E
+
) of digraph (V, E). 

 

 

 

 

 

 

R       R
+ 

 

 

Solution: First we let 

   

[
 
 
 
 
             
             
             
             
              ]
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Now we will find   . We observe     has 1‘s in position 1 of column 1 and 

positions 1 and 2 of row 1. Thus,                   , but since the (1, 

1) and (1, 2) entries of     were already transferred to   , we introduce no 

new 1‘s. Thus,      . 

Now, we will compute    so that in this computation we let k = 2. In 

column of   , there is a 1 in position 1 and there is a 1 in a position 3 of row 

2. Thus,            This is only new 1 to be added to   . 

 

Hence, 

   

[
 
 
 
 
             
             
             
             
              ]

 
 
 
 

 

 

In similar way we will proceed to compute   . We observe that position 1 

and 2 of column 3 have 1‘s, while position 4 and 5 of row 3 have 1‘s. Thus, 

                                 . Therefore, 

 

   

[
 
 
 
 
             
             
             
             
              ]

 
 
 
 

 

 

Next observe that    has a 1 in positions 1, 2 and 3 of column 4 while row 4 

has a 1 in position 5. Thus,                          . None of 

these require changes. Therefore,     . 

Finally,    has a several positions of column 5 but no 1‘s in row 5. Thus, no 

new 1‘s need to be added to   . Therefore,          is the adjacency 

matrix of   . 

 

COROLLARY:  Warshall‘s algorithm computes the adjacency matrix of the 

transitive closure (V, E
+
) of digraph (V, E). 

 

Check Your Progress 2 
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1. What is Boolean Product? 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2. What is Warshall Algorithm? 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

5.5 LET’S SUM  UP 
 

It has got wide application in scheduling of system tasks, represent a 

network of processing elements, helps to represent casual relations between 

events, used extensively in Genealogy and version history and also used for 

compact representation of a sequences i.e. data compression. 

 

 

5.6 KEYWORDS 
 

1. A directed cycle is a directed path (with at least one edge) whose 

first and last vertices are the same. 

2. The length of a path or a cycle is its number of edges. 

3. A directed acyclic graph (or DAG) is a digraph with no directed 

cycles 

 

5.7 QUESTION FOR REVIEW 
 

1. What is the longest length possible for a simple directed path in a digraph 

with n vertices? How about the longest cycle? 
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a a c b b c d 
d 

2. Using Warshall‘s slgorithm, compute the adjacency matrix of the 

transitive closure of the digraph in the following figure. 

 

 

 

 

 

 

R       R
+ 

 

3. Let A={ 0,1,2,3} and a relation R on A be given by 

4. R={ (0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3) } . 

Is R reflexive? symmetric? transitive? 

4. Let m,n and d be integers with d  0. Then if d divides (m-n), 

denoted by d | (m-n), i.e. m-n=dk for some integer k, then we 

say m is congruent to n modulo d, written simply 

as m  n (mod d). Let R be the relation of congruence modulo 3 on 

the set  of all integers, i.e. 

m R n  m  n (mod) 3  3 | (m-n) . 

Show R is an equivalence relation. 
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5.9 ANSWER TO CHECK YOUR PROGRESS 
 

1. Explain the concept with example - 5.1.2 

2. Explain the concept with example - 5.1.5 

3. State the concept and explain the theorem with proof---5.3.4 

4. State the concept and explain the theorem with proof---5.4 
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UNIT 6: RECURRENCE RELATION 
 

STRUCTURE 

6.0 Objectives 

6.1 Introduction 

6.2 What Is A Recurrence? 

6.3 Towers Of Hanoi  

6.4 Homogeneous Linear Recurrence Relation With Constant Coefficient 

 6.4.1 Concept 

 6.4.2 Theorem 

 6.4.3 Particular Solution of a Difference Equation 

6.5 NONHOMOGENEOUS EQUATION 

 6.5.1 Concept 

 6.5.2 Theorem 

6.6 Recurrence Relation and Sequences 

 6.6.1 Find general term of sequence 

6.7 Difference Table 

6.8 Line in a plane in General Position 

6.9 Let‘s sum  up 

6.10 Keywords 

6.11 Question  for review 

6.12 Suggested Readings 

6.13 Answer to check your progress 
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6.0 OBJECTIVE 
 

 What is a Recurrence Relation and its application in solving Tower of 

Hanoi Problem? 

 Homogeneous and Non-Homogeneous Recurrence Relation 

 Application of recurrence relation in finding a general term of sequence 

 Concept of Difference Table and Line in a plane in general position 

 

6.1 INTRODUCTION: 
 

Recursion— breaking an object down into smaller objects of the same 

type— is a common approach in mathematics and computer science. Like 

for instance, in an induction proof we establish the truth of a statement P (n) 

from the truth of the statement P (n − 1). In computer programming, a 

recursive algorithm solves a problem by applying itself to smaller instances 

of the problem and on the mathematical side, a recurrence equation 

describes the value of a function in terms of its value for smaller arguments.  

 

6.2 WHAT IS A RECURRENCE? 
 

A recurrence relation for a sequence a0, a1, a2 … is a formula (equation) 

that relates each term an to certain of its predecessors a0, a1 …, an − 1. 

The initial conditions for such a recurrence relation specify the values 

of a0, a1, a2 …, an − 1. 

 

Let us consider the following example, the recursive formula for the 

sequence 3, 8, 13, 18, 23 

is a1 = 3, an = an − 1 + 5, 2 ≤ n < ∞. 

Here, a1 = 3 is the initial condition. 
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Similarly, consider the infinite sequence as 3, 7, 11, 15, 19, 23 … which can 

be defined by the following recursive formula as 

a1 = 3, an = an − 1 + 4, 2 ≤ n < ∞. 

 

Example: Find the sequence represented by the recursive formula a1 = 

5, an = 2an − 1, 2 ≤ n ≤ 6. 

 

Solution: The initial condition is a1 = 5 and n satisfies the condition 2 ≤ n ≤ 

6. Thus, 

 a2 = 2a1 = 10, 

a3 = 2a2 = 20, 

a4 = 2a3 = 40, 

a5 = 2a4 = 80, 

a6 = 2a5 = 160. 

Hence the given recurrence formula defines the finite sequence 

5, 10, 20, 40, 80, 160. 

 

6.3 THE TOWERS OF HANOI 
 

In the Towers of Hanoi problem, there are three posts and seven disks of 

different sizes. Each disk has a hole in the center so that it fits on a post. At 

the start, all seven disks are on post #1 as shown below. The disks are 

arranged by size so that the largest is on the bottom and the smallest is on 

top. The goal is to end up with all seven disks in the same order on a 

different post. Because of two restrictions, this is not trivial. First, the only 

permitted action is removing the top disk from a post and dropping it onto 

another post. Second, a larger disk can never lie above a smaller disk on any 

post. (Note: We cannot move whole stack of disks at once and then drop 

them all on another post!) 
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Fig 4.1: Tower of Hanoi Problem 

 

One approach to this problem is to consider a simpler variant with 

only three disks. We can quickly exhaust the possibilities of this simpler 

puzzle and find a 7 move solution such as the one shown below. (The disks 

on each post are indicated by the numbers immediately to the right. Larger 

numbers correspond to larger disks.) 
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Fig 4.2: Solution for the Tower of Hanoi Problem when 3 disks are considered 

 

Finding a Recurrence 

The Towers of Hanoi problem can be solved recursively as follows. Let Tn 

be the minimum number of steps needed to move an n disk tower from one 

post to another. For example, a bit of experimentation shows that T1 = 1 and 

T2 = 3. For 3 disks, the solution given above proves that T3 ≤ 7. We can 

generalize the approach used for 3 disks to the following recursive algorithm 

for n disks.  

Step 1. Apply this strategy recursively to move the top n − 1 disks from the 

first post to the third post. This can be done in Tn−1 steps 

 

 

 

 

 

 

Step 2. Move the largest disk from the first post to the second post. This 

requires just 1 step. 

 

Step 3. Recursively move the n−1 disks on the third post over to the second 

post. Again, Tn−1 steps are required. 
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This algorithm shows that Tn, the number of steps required to move n disks to a 

different post, is at most 2Tn−1 + 1. We can use this fact to compute upper bounds 

on the number of steps required for various numbers of disks: 

          

   

          

    

 

A Lower Bound for Towers of Hanoi: 

 For this to happen, the n − 1 smaller disks must all be stacked out of 

the way on the only remaining post. Arranging the n − 1 smaller disks this 

way requires at least      moves. After the largest disk is moved, at least 

another     moves are required to pile the n − 1 smaller disks on top. This 

argument shows that the number of steps required is at least        . 

Since we gave an algorithm using exactly that number of steps, we now have 

a recurrence for Tn, the number of moves required to complete the Tower of 

Hanoi problem with n disks:  

     

                                    

 

We can use this recurrence to conclude that                   

 

Check Your Progress 1 

1. What is Recurrence relation? 

_______________________________________________ 
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_______________________________________________ 

 

_______________________________________________ 

 

2. Explain the concept of Tower of Hanoi. 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

 

6.4 HOMOGENEOUS LINEAR 

RECURRENCE RELATION: 
 

6.4.1 CONCEPT: 

A linear recurrence relation of order k with constant coefficient is a 

recurrence relation of the form an = c1 an − 1 + c2 an − 2 + … + ck an − k,     ck ≠ 

0. 

 

For example, 

 

1. The relation             is a linear homogeneous recurrence 

relation of order 1. 

 

2. The recurrence relation              is a linear recurrence 

relation of order 2. 

 

3. The recurrence relation              is not a linear recurrence 

relation with constant coefficients because the coefficient 2n is not 

constant. It is a linear homogeneous recurrence relation with non-

constant coefficients. 
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4. The recurrence relation         is not a linear homogeneous 

recurrence relation because an − an − 1 ≠ 0. It is an inhomogeneous 

recurrence relation. 

 

5. The recurrence relationan + 7an − 2 = 0is a second order linear 

recurrence relation with constant coefficients. 

 

6. The recurrence relation       
      is not a linear 

homogeneous relation. 

 

Definition: The equationx
k
 = r1 x

k − 1
 + r2x

k − 2
 + … + rkof degree k is called 

the characteristic equation of the linear homogeneous recurrence 

relationan = r1 an − 1 + r2 an − 2 + … + rk an − k 

of order k. 

6.4.2 THEOREM 

Theorem: 

If the characteristic equation x
2
 − r1 x − r2 = 0 of the homogeneous 

recurrence relation an = r1 an − 1 + r2 an−2has two distinct roots s1 and s2, 

then      
     

 where u and v depend on the initial conditions, is the 

explicit formula for the sequence. 

(To say ―u and v depend on the initial conditions‖ means that u and v are the 

solutions of the system of simultaneous equation            and    

   
     

 ) 

 

Proof. Since s1 and s2 are roots of the characteristic equation x
2
 − r1 x − r2 = 

0, we have 

  
                                   

  
                                   

 

Let      
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It is sufficient to show that (3) defines the same sequence as an = r1an − 

1 + r2 an − 2. We have 

           

       
     

  

and the initial conditions are satisfied. Further, 

      
     

  

          
      

     
      

  

             
                

            [                ] 

                
         

         
         

    

                 
       

           
       

     

                                         [                         ] 

 

Hence (3) defines the same sequence as an = r1an − 1 + r2an−2. 

Hence an = us1
n
 + vs2

n
 is the solution to the given linear homogeneous 

relation. 

 

Theorem: 

If the characteristic equation x
2
 − r1x − r2 = 0 of the linear homogeneous 

recurrence relation an = r1 an − 1+ r2 an − 2 has a single root s, then the explicit 

formula (solution) for the recurrence relation is an = us
n
+ vns

n
, 

where u and v depend on the initial conditions. 

 

Proof. Since s is the root of the characteristic equation, we have 

  

s
2
 − r1s − r2 = 0                            (1) 

Let 

  

an = u s
n
 + v n s

n
 , n ≥ 1.             (2) 

It suffices to show that (2) defines the same sequence as an = r1an − 1 + r2an − 

2. We have 

 a1 = u s + v s, 

a2 = u s
2
 + 2v s

2
 

and the initial conditions are satisfied. Also 

https://www.safaribooksonline.com/library/view/discrete-mathematics/9789332503441/xhtml/chapter003.xhtml#img-c03p123
https://www.safaribooksonline.com/library/view/discrete-mathematics/9789332503441/xhtml/chapter003.xhtml#img-c03p123
https://www.safaribooksonline.com/library/view/discrete-mathematics/9789332503441/xhtml/chapter003.xhtml#img-123_e2
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     an = u sn + v n sn 

  = u sn − 2 · s2 + v n sn − 2 · s2 

  = u sn − 2 (r1s + r2) + vnsn − 2 (r1s + r2) (using (1)) 

  = r1 usn − 1 + r2 usn − 2 + r1 vnsn − 1 + r2 vnsn – 2 

  = r1 (usn − 1 + vnsn − 1) + r2(usn − 2 + vnsn − 2) 

  = r1an − 1 + r2an − 2 (using the expression for an − 1 and an − 

2 from (2)). 

Thus (2) defines the same sequence as an = r1an − 1 + r2an−2 and so is the 

explicit formula for the recurrence relation. 

 

Example: Find an explicit formula for the sequence defined by the 

recurrence relation an = an − 1 + 2an−2, n ≥ 2,with the initial conditionsa0 = 1 

and a1 = 8. 

 

Solution: The recurrence relation an = an − 1 + 2an−2is a linear homogeneous 

relation of order 2.  

Its characteristic equation isx
2
 − x − 2 = 0which yields 

 

  
  √   

 
 

   

 
      

 

Hence, 

an = u(2)
n
 + v(−1)

n
                     (1) 

and we have 

  

a0 = u + v = 1 (given), 

a1 = 2u − v = 8 (given). 

Solving for u and v, we have 

 u = 3, v = −2. 

https://www.safaribooksonline.com/library/view/discrete-mathematics/9789332503441/xhtml/chapter003.xhtml#img-123_e1
https://www.safaribooksonline.com/library/view/discrete-mathematics/9789332503441/xhtml/chapter003.xhtml#img-123_e2
https://www.safaribooksonline.com/library/view/discrete-mathematics/9789332503441/xhtml/chapter003.xhtml#img-123_e2
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Hence, an = 3(2)
n
 − 2(−1)

n
, n ≥ 0is the explicit formula for the sequence. 

 

Example: Solve the recurrence relation dn = 2dn − 1 − dn−2 with initial 

conditions d1 = 1.5 and d2 = 3. 

 

Solution: 

The relation dn = 2dn − 1 − dn−2 is a linear homogeneous recurrence relation of 

order 2. The characteristic equation (or associated equation) for this 

recurrence relation is x2 − 2x + 1 = 0 

which yields 

 

  
  √   

 
     

 

Thus, the characteristic equation has a multiple root 1. 

Hence, dn = u · 1
n
 + nv · 1

n
 = (u + nv) · 1

n
  and so 

  

d1 = u + v = 1.5 (given), 

d2 = u + 2v = 3 (given). 

 

Solving for u and v, we get u = 0, v = 1.5 and so dn = 1.5n is the explicit 

formula (homogeneous solution) for the given recurrence relation. 

 

6.4.3. Particular Solution Of Difference Equation 

Definition: The (total) solution of a linear difference equation (linear 

recurrence relation) 

 an = r1 an − 1 + r2 an−2 + … + rk an−k = f (n),where f (n) is constant or a 

function of n with constant coefficients is the sum of two parts, the 

homogeneous solution satisfying the difference equation when the right-

hand side of the equation is set to be 0, and the particular solution, which 

satisfies the difference equation with f (n) on the right-hand side. 
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The particular solution is obtained by the method of inspection because we 

do not have a general procedure to find particular solution of a given 

difference equation. A general form of particular integral is set up according 

to the form of f (n). We will consider the following cases 

 

Case I: If f (n) is a polynomial inn of degree m then we take P1 n
m
 + P2 n

m − 

1
 + … + Pm+1as the particular solution of the difference equation. Putting this 

solution in the given difference equation, the values of P1, P2 …, Pm+1 are 

determined. 

 

Example: Find the particular solution of the difference equation 

 an − an − 1 − 2an − 2 = 2n
2
. 

Also write down the total solution. 

Solution: Suppose that the particular solution is of the form 

 P1 n
2
 + P2 n + P3,                 (1) 

where P1, P2 and P3 are constants to be determined. Substituting (1) in the 

given difference equation, we obtain 

(P1 n
2
 + P2 n + P3) − [P1 (n − 1)

2
 + P2 (n − 1) + P3] − 2[P1 (n − 2)

2
 + P2 (n − 

2) + P3] = 2n
2
 

or 

P1 n
2
 + P2 n + P3 − [P1 (n

2
 + 1 − 2n) + P2 (n − 1) + P3] − 2[P1 (n

2
 + 4 − 4n) 

+ P2 (n − 2) + P3] = 2 n
2
 

or 

−2P1 n
2
 + n (10 P1 − 2 P2) + (−9 P1 + 5 P2 − 2 P3) = 2 n

2
. 

Comparing coefficients of the powers of n, we have 

 −2 P1 = 2, 

10 P1 − 2 P2 = 0, 

9 P1 − 5 P2 + 2 P3 = 0, 

which yield  

P1 = −1, P2 = −5, P3 = −8. 

Therefore, the particular solution is 

 −n
2
 − 5n − 8. 
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The homogeneous solution of this recurrence relation is 

 3(2)
n
 − 2(−1)

n
. 

Hence the total solution is 3.2
n
 − 2(−1)

n
 − n

2
 − 5n − 8. 

 

Example: Find the particular solution of the difference equation 

 an + 5an − 1 + 6an − 2 = 3n
2
 − 2n + 1. 

Solution: Here the right-hand side is a function of n and it is a polynomial 

of degree 2. So suppose that particular solution is of the form 

 P1 n
2
 + P2 n + P3,             (1) 

where P1, P2 and P3 are to be determined. Substituting (1) in the given 

difference equation, we get 

 

P1 n
2
 + P2 n + P3 + 5[P1 (n − 1)

2
 + P2 (n − 1) + P3] + 6[P1 (n − 2)

2
 + P2 (n − 

2) + P3] = 3n
2
 − 2n + 1,which yields 

 

12P1 n
2
 − n(34P1 − 12P2) + (29P1 − 17P2 + 12P3) = 3n

2
 − 2n + 1. 

 

Comparing the coefficients of the powers of n we have 

 12P1 = 3, 

34P1 − 12P2 = 2, 

29P1 − 17P2 + 12P3 = 1 

and so 

   
 

 
    

  

  
        

  

   
 

 

Hence, the particular solution is 

 

 
   

  

  
  

  

   
 

 

Case II: If f (n) is a constant, then the particular solution of the difference 

equation will also be a constant P, provided that 1 is not a characteristic 

root of the difference equation. 
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Example: Find the particular solution of the difference equation an − 4 an − 

1 + 5an − 2 = 2. Hence find the total solution of this recurrence relation. 

Solution: Here f (n) = 2 (constant) and 1 is not characteristic root. So the 

particular solution will also be a constant P. Putting in the given recurrence 

relation of order 2, we have 

 P − 4P + 5P = 2, 

⇒ 2P = 2, 

⇒ P = 1. 

Also, the characteristic equation of the given difference equation is 

 x
2
 − 4x + 5 = 0, whose roots are 

  
  √     

 
 

    

 
     

 

Thus the homogeneous solution is 

 u · (2 + i)
n
 + v · (2 − i)

n
, n ≥ 0. 

Hence the total solution of the given difference equation is 

 an = u · (2 + i)
n
 + v · (2 − i)

n
 + 1. 

 

Case III: If f (n) is of the form α
n
, the corresponding particular solution is of 

the form P α
n
 provided that α is not a characteristic root of the difference 

equation of order n. 

 

Example: Find the particular solution of the difference equation an + 5 an − 

1 + 4an−2 = 56 · 3
n
. Hence, find the total solution of this difference equation? 

Solution: The characteristic equation of the difference equation is 

 x
2
 + 5x + 4 = 0 

whose roots are − 4 and −1. Thus the homogeneous solution is 

 u (− 4)
n
 + v (−1). 

Since f (n) = 56 · 3
n
 and 3 is not a characteristic root, the particular solution 

is of the form P 3
n
. Substituting this in the difference equation, we get 
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⇒  (  
 

 
 

 

 
)     

⇒  (
      

 
)     

      

Hence the particular solution is 18 · 3
n
. 

 

Case IV: If α is not a characteristic root of the difference equation and f (n) 

is of the form 

 (c1n
m
 + c2n

m − 1
 + … + cn+1) α

n
, 

then the particular solution is of the form 

 (P1n
m
 + P2n

m − 1
 + … + Pn+1) α

n
. 

 

Example: Find the total solution of the difference equation 

 an − an+1 − 2an − 2 = 3n · 4
n
. 

Solution: The characteristic equation of the given difference equation is 

x
2
 − x − 2 = 0 

whose roots are 2 and −1.  

Hence its homogeneous solution is 

 u · 2
n
 + v · ( − 1)

n
. 

Further, f (n) = 3n · 4
n
 and 4 is not a characteristic root of the difference 

equation. Hence particular solution is of the form 

  

(nP1 + P2) 4
n
.                 (1) 

Substituting (1) in the given difference equation, we get 

         
  [          ] 

     [          ] 
          

          
  

 

 
[          ] 

  
 

  
[          ] 

 =      

     (   
 

 
   

 

 
  )    (

  

 
    

  

 
 

  

 
)        

      (
   

 
)    (

  

 
 

   

 
)        

Comparing coefficients of both sides, we have 
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Hence the particular solution is 

(
  

 
  

  

  
)    

Therefore the total solution is 

               (
  

 
  

  

  
)    

 

Case V: If α is a characteristic root of multiplicity m−1 and f (n) is of the 

form 

 (c1 n
p
 + c2 n

p − 1
 + … + cp+1) α

n
, the corresponding particular solution of the 

recurrence relation will be of the form 

 n
m − 1

(P1 n
p
 + P2 n

p − 1
 + … + Pp+1) α

n
. 

 

Example: Find the particular solution of the difference equation an − 4an − 

1 = 6 · 4
n
. 

Solution: The characteristic equation of the given difference equation is 

 x − 4 = 0 

and so 4 is a root of multiplicity 1. Therefore, the particular solution is of the 

form 

  

n P · 4
n
.                     (1) 

Substituting (1)  in the given difference equation, we get 

                      nP · 4
n
 − 4(n − 1)P · 4

n − 1
 = 6 · 4

n
 

               ⇒   nP4
n
 − (n − 1)P · 4

n
 = 6 · 4

n
 

               ⇒   nP − nP + P = 6 

               ⇒   P = 6. 

Hence the Particular solution is 6n · 4
n
, whereas the total solution of the 

given difference equation is  4
n
 (u + 6n). 
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6.5 LINEAR NON-HOMOGENEOUS 

RECURRENCE RELATION: 
A linear non-homogenous recurrence relation with constant coefficients is a 

recurrence relation of the form  

                               

where           are real numbers, and      is a function 

depending only on n.  

The recurrence relation                            is called the 

associated homogeneous recurrence relation. This recurrence includes k 

initial conditions.                      

 

Example: The following recurrence relations are linear nonhomogeneous 

recurrence relations 

1.            

2.                     

3.                 

4.             

 

THEOREM: 

Let                              ) be a linear non-

homogeneous recurrence.  Assume the sequence    satisfies the 

recurrence.  Another sequence    satisfies the nonhomogeneous 

recurrence if and only if          is also a sequence that satisfies 

the associated homogeneous recurrence is also. 

Proof:  

Part1: If    satisfies the associated homogeneous recurrence then     

satisfies the non-homogeneous recurrence.  

                               

                          

Now  

                                                 

       

 Since,  
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                                         ) 

 

 So,    is a solution of the non-homogeneous recurrence. 

 

Part2:If    satisfies the non-homogeneous recurrence then   is 

satisfies the associated homogeneous recurrence. 

                               

                             ) 

                                                  

         

Since, 

                          

 

So,   is a solution of the associated homogeneous recurrence. 

 

Proposition:  

Let                              )be a linear 

nonhomogeneous recurrence. 

Assume the sequence   satisfies the recurrence. 

Another sequence an satisfies the non-homogeneous recurrence ifand only 

if        is also a sequence that satisfies theassociated homogeneous 

recurrence. 

 

Proof: We already know how to find   . 

 For many common   ), a solution    to the non-homogeneousrecurrence is 

similar to f(n). 

 Then you should find solution        to the 

nonhomogeneousrecurrence that satisfies both recurrence andinitial 

conditions. 
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Example: What is the solution of the recurrence relation        

                  with      and      ? 

Solution: Since it is linear non-homogeneous recurrence,    is similar to 

     

Guess:         

                  

                            

                         

                  

           

 

So           

(bn only satisfies the recurrence, it does not satisfy the initial conditions.) 

 

Check Your Progress 2 

1. Define the terms: 

a.Associated homogeneous recurrence relation 

characteristic equation 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2. What is total solution? 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

6.6 SEQUENCES AND RECURRENCE 

RELATION 
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We have encounter various types of ‗numerical reasoning‘ puzzles where we 

have to fill in a missing number among a chain of numbers, such as 1, 4, 7, 

10 … 

Obviously, our answer would be 13, as in this sequence each term exceeds 

the previous one by 3 which is an example of a recurrence relation, in 

which each term has a certain relation with the previous term(s), and such a 

chain of numbers is called a sequence. 

 

Also, we can replace 13 with any other number, the answer is still valid 

because we can always describe some kind of relations between the terms. 

We can a generalized formula by filling in the blank with any number, 

which gives the sequence when one enters 1, 2, 3, 4, … into the formula.  

 

Consider the formula 3n −2, we can enter n = 1, 2, 3, 4, 5 … in the given 

formula and we get the sequence as 1, 4, 7, 10, 13 … . This popular method 

is known as Lagrange‘s interpolation, wherein we can actually find formulas 

in the form of polynomials which give sequences like 1, 4, 7, 10, 14 or with 

the fifth term replaced by any other number. Such a formula is said to give a 

general term for the sequence. 

Let us consider one example to clarify our discussion and take it further. 

 

Example: A piece of paper is 1 unit thick. By folding into half, the thickness 

becomes 2 units. Folding into half again, its thickness becomes 4 units, and 

so on. 

(a) What is the thickness of the paper after it is folded 12 times? 

(b) What is the thickness of the paper after it is folded 2004 times? 

Solution: 

i. When a piece of paper is folded 3 times, the thickness 

becomes 8 units. Similarly, when we fold it for 4, 5, 6 times, the 

thickness becomes 16, 32 and 64 units respectively. So, each time the 

paper is folded, its thickness doubles, that means we can simply multiply 

the thickness by 2 each time. Continuing in the same way, when it is 

folded 12 times, the thickness willbecome 4096 units. 
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ii. Here the case is different. We don‘t want to opt for the 

multiplication more than 2000 times and give the answer in a 

long chain of digits. As we had observe that the thicknesses 2, 4, 

8, 16, etc. are actually powers of 2. Indeed, it is not difficult to 

see that after n folds, the thickness would be 2
n
units. Hence the 

answer is 2
2004

 

 

In the above example, if we let xnbe the thickness of the paper when 

it is folded n times, then the two parts would be asking for the values of 

x12and x2004respectively. The value of x12may be calculated directly, but that 

of x2004is quite difficult. To compute x12we actually list out the values of 

x1,x2,x3 … In this way we obtain a sequence of numbers. 

 

Also, each time the paper is folded, its thickness doubles this implies 

        . This formula, which relates a term in the sequence with 

previous term(s), is known as a recurrence relation for the sequence. The 

fact that the initial thickness is 1 unit may be expressed as x0 = 1. This is 

known as an initial condition. With the initial condition and the recurrence 

relation, we are able to compute xn for small n. 

For large value of n, the computation will be clumsy and we want to write 

down the value of    neatly. So we can write       , and such a formula 

is known as a general term of the sequence, which expresses the n-th term 

in terms of n (and independent of the previous terms of the sequence, unlike 

in the recurrence relation).  

 

Example: Observe the following pattern. 
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. 

. 

      

 

(a) How many ‗+‘ signs should there be in the box? 

(b) What are the smallest and largest integers in the box? 

 

Solution: 

(a) The number of ‗+‘ signs in the first five rows are 0, 1, 2, 3, 4 

respectively. Hence, if    

denotes the number of ‗+‘ signs in the n-th row, then we have  

      , so that the 

number of ‗+‘ signs in the 100th row is               . 

(b) Let   and   denote respectively the smallest and largest integers on 

the left hand side of then-th row. Then we have to find     and      

and it would be very easy if we can find the general term for  and 

  . 

 

Note that for n = 1, 2, 3, 4, 5,   is equal to 1, 3, 7, 13, 21 respectively. To 

find an expression for   in terms of n, if we subtract 1 from each term, the 

sequence will become 0, 2, 6, 12, 20 … This is more evident, for they are 

0×1, 1×2 , 2×3 , 3×4 and 4×5 respectively.  

 

In this way, we see that             , so the smallest integer in the 

box is  

                      . 

 

Now to find the general term for   is easy, for the smallest integer on the 

left hand side of the 

(n +1)
st
 row is     , so   =                          
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In particular, the largest integer in the box is  

 

                    

 

6.6.1 Finding The General Term Of A Sequence From 

The Recurrence Relation 

A. INITIAL CONDITION: 

This method is best illustrated with the help of following examples 

as shown below: 

 

Example: A staircase consists of n steps. A boy walks from the bottom to 

the top, each time climbing 1 or 2 steps. 

 

(a) If n = 10, what is the number of ways in which he can climb up the 

stairs? 

(b) If n = 2004, what is the number of ways in which he can climb up the 

stairs? 

Solution: 

Let    be  the number of ways to climb up a stairs of n steps with each time 

climbing 1 or 2 steps. 

So we have to compute     and      . To climb n steps, we may first climb 

1 or 2 steps. In the former case, we are to climb n −1 more steps, and this 

can be done in     ways. In the latter case, we are to climb n −2 more steps, 

and this can be done in     ways. Therefore, we obtain the recurrence 

relation              

Since the recurrence relation for   depends on two previous terms, we need 

two initial conditions i.e.     and       

By direct computation, we can obtain       , thus solving part (a). 

 

For part (b) it‘s difficult to have direct computation and to find the general 

term. 
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So we will solve another example as follows that will help with the (b) part 

solution as well. 

 

 

Example: For positive integer n, let 

     
 

√ 
        

 

where   and        are roots of the equation. 

 

         

(a) Find             and      

(b) Show that                    

(c) Show that      is an integer for al positive integer n. 

 

Solution:  

(a) The value of     is the sum of roots of the equation        

 , which is 1. 

Similarly,    is the product of the roots, which is   . 

 

 

We also have 

     
 

√ 
      

 

√ 
  √           

 

√ 
[          ]

   

 

     
 

√ 
        

 

√ 
                     

       

 

Since   and  are roots of the equation         , we have      

    i.e.       . 

Similarly,       . Consequently, 



Notes 

153 

√                  

             

                 

                     

 √         √       

 

Dividing both sides by √ , we get the desired result as follows 

                   

 

(c) Since f (1) and f (2) are integers, and that                    

so f (n) is an integer for all positive integers n. 

 

Incidentally, the f (n) here is precisely the    in the above example. 

Therefore, the answer to part (b) in above example would be 

 

              
 

√ 
[(

  √ 

 
)

    

 (
  √ 

 
)

    

] 

 

where the values of   and   are obtained by solving the equation 

        . 

 

 

B.THE METHOD OF FINITE DIFFERENCES: 

 

When polynomial is given and we are aware of first few terms, then it is 

easy to find the general term. For instance, let us consider the following 

‗numerical reasoning‘ puzzle: 

7, 8, 12, 19, 29,_______,…. 

After observing the above sequence we can easily make out that the 

difference between successive terms are 1, 4, 7 and 10. Obviously, the next 

difference would be 13, so the missing term is 42. 
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The next difference is ‗naturally‘ 13, because then the ‗second level 

differences‘ would be constantly equal to 3. 

 

7 8 12 19 29 

1 4 7 10 

3 3 3 

 

After two levels of taking differences, we have reached a ‗finite difference‘, 

which is constantly 3. If we regard this as a continuous function, say 

                      and so on, and taking differences like this is 

same like doing differentiation. If the function becomes constant after taking 

differences twice, it means that the second derivative of the function is 

constant, and hence the function is a polynomial of degree 2. In this way, the 

general term of the above sequences to be of degree 2. 

Let us consider the following expression 

            

For some constants A, B and C, if we put                    , we 

obtain 

        

         

           

 

We have three linear equations in three unknowns, we can solve 

these for the values of A, B and C. One of the easiest way to solve the above 

system of equation is to take successive differences of the equations. For 

example, if we subtract the first equation from the second and the second 

from the third, we get the following equation 

       

       

 

If we again take the difference, we have 3 = 2A, so A= 3/2. Backward 

substitution yields B = – 7/2 and C = 9. The general term for the sequence is 

given as 



Notes 

155 

   
 

 
   

 

 
    

 

C. Backtracking Method: 

 

CONCEPT: Consider the sequence 1, 4, 9, 16, 25, 36, 49 … which is a 

sequence of the squares of all positive integers. We can define this sequence 

by the formula  an = n
2
, 1 ≤ n < ∞. 

So we have used only positive number to describe the terms of the sequence. 

Such type of formula is called Explicit formula. 

Also, the explicit formula  an = (−4)
n
, 1 ≤ n < ∞ describes the infinite 

sequence −4, 16, −64, 256, … 

 

Example: Find the explicit formula for the finite sequence 87, 82, 77, 72, 

67. Can this sequence be described by a recursive relation? 

Solution: The explicit formula for the given finite sequence is an = 92 − 

5n,   n = 1, 2 …. 

Also, it can be described by the recursive formula a1 = 87,   an = an − 1 − 

5,   2 ≤ n ≤ 5. 

 

To study general properties of sequences, the recurrence relation with 

initial conditions are solved to get explicit formula. Such an explicit formula 

is called a solution of the given recurrence relation. 

 

CONCEPT:A technique for finding an explicit formula for the sequence 

defined by a recurrence relation is called backtracking. In this technique, 

the values of an  are back tracked, substituting the values of an − 1, an − 2and so 

on, till a pattern is clear. 

 

Example: Find an explicit formula for the recurrence relation 

a0 = 1, an = an − 1 + 2. 

Solution: The recurrence relation 

a0 = 1, an = an − 1 + 2 defines the sequence 1, 3, 5, 7, …. 
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We backtrack the value of an by the substituting the definition of an − 

1, an − 2 and so on untill there is a pattern. We have 

        an = an − 1 + 2 

  = an − 2 + 2 + 2 = an − 2 + 2 · 2 

  = an − 3 + 2 + 2 + 2 = an − 3 + 2 · 3 

  = an − 4 + 2 + 2 + 2 + 2 = an − 4 + 2 · 4 and so on. 

Thus, backtracking yields 

an = an − k + 2k. 

If we set k = n, then 

an = an − n + 2 n = a0 + 2 n = 1 + 2 n, which is the required explicit 

formula. 

 

Example: Backtrack to find explicit formula for the sequence defined by the 

recurrence relation 

 a1 = 1, an = 3 an − 1 + 1, n ≥ 2. 

Solution: The recurrence relation defines the sequence 1, 4, 13, 40, 

…. 

Backtracking yields 

    an = 3 an − 1 + 1 

  = 3(3 an − 2 + 1) + 1 = 3
2
·an − 2 + 3

1
 + 1 

  = 3{3(3 an − 3 + 1) + 1} + 1 = 3
3
 an − 3 + 3

2
 + 3

1
 + 1 

  = 3[3{3(3 an − 4 + 1) + 1} + 1] + 1 

  = 3
4
 an − 4 + 3

3
 + 3

2
 + 3

1
 + 1 and so on. 

The backtracking will end at 

an = 3
k
 an − k + 3

k − 1
 + 3

k − 2
 + … + 3

2
 + 3

1
 + 1. 

If we set k = n − 1, then we have 
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        an = 3
n − 1

 an − (n − 1) + 3
n − 2

 + … + 3
3
 + 3

2
 + 3

1
 + 1 

  = 3
n − 1

 a1 + 3
n − 2

 + … + 3
3
 + 3

2
 + 3

1
 + 1 

  = 3
n − 1

 + 3
n − 2

 + … + 3
3
 + 3

2
 + 3

1
 + 1 

   
   

    

   
 

    

 
 

Hence    
    

 
is the required explicit formula. 

 

 

6.7 DIFFERENCE TABLE: 
 

CONCEPT: Suppose a sequence is given as             , let ∆     

denote the i
th

 difference at the j
th

 level, defined by the recurrence relation as  

∆   
  ∆     

    ∆     
  

∆        

 

A difference table represents the finite difference of a sequence S as a 

triangular matrix as shown below: 

 

 

 

 

 

 

 

The height of a difference table is the smallest integer k such that ∆        

for         
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Consider a k-th degree polynomial            
     

        . 

With reference to Binomial theorem  

          ∑(
 
 
)

   

   

   

So the first order differences of P(n, k) is given as follows 

                  ∑ (
 
 
)  

   

   

 ∑   

   

   

[             ] 

 

define a polynomial of degree k – 1 where the coefficient of the leading term 

     is          If the difference table is given to us, we can easily 

reconstruct the polynomial defining the given sequence using Newton 

forward difference formula. 

       ∑(
 
 
)∆    

 

   

 

 

6.8 LINE IN A PLANE 
 

We will refer the following figures to understand the concept: 

 

 

 

 

 

Fig 6.3: Line in Plane 

The first plane has no lines so it has one region represented by   ; the 

second plane has one line so it has two region represented by    and third 

plane has a two line so it has four region represented by    

[Note: Each line extend infinitely in both the directions] 
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Now we can generalize it as       which implies that if we add a new 

line then the number of region get double. This generalization is false. We 

could achieve the doubling of the region if the nth line would split each old 

region in two; if each old region is convex. 

[NOTE: A straight line can split a convex region into at most two new 

regions, which will also be convex. A region is convex if it includes all line 

segments between any two of its points.] 

 

 

 

Fig 6.4: 3 Lines intersecting in a plane 

 

But when we will add third line as shown in above diagram, the dark one we 

observe that it can split at most three of the old regions, no matter how the 

first two lines are placed in a plane. 

Thus          . The nth line (for n > 0) increases the number of 

regions by k if and only if it splits k of the old regions, and it splits k old 

regions if and only if it hits the previous lines in k – 1 different places. Two 

lines can intersect in at most one point. Therefore the new line can intersect 

the n – 1 old lines in at most n – 1 different points, and we must have    . 

We have established the upper bound 

         ,  for n > 0. 

With the help of induction equality can be achieved in this formula. 

Consider the situation where nth line is place in such a way that it‘s not 

parallel to any of the other line ( this means it intersect them all) and such 

that it doesn‘t go through any of the existing intersection points (hence it 

intersects them all in different places). Therefore, the recurrence is given as  

      

             for n > 0. 

The known values of       and    satisfy the above relation. We cab write 
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. 

. 

. 

                        

       

Where                    

 

In other words,    is one more than the sum    of the first n positive 

integers. We can have following table for   . 

n 1 2 3 4 5 6 7 8 9 10 

Sn 1 3 6 10 15 21 28 36 45 55 

 

These values are also known as triangular numbers, because    is the 

number of bowling pins in an n-row triangular array. For instance four row 

array has        pins. 

If we add    to its reversal, so that each of the n columns on the right sums 

to  n + 1. 

                   

                        

                                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

           

   
      

 
           

We have our final solution as  

   
      

 
            

This is the general equation for line in a plane. 

 

CHECK YOUR PROGRESS 3 
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1. Explain the Finite method of finding general term. 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2. Enumerate the concept of back tracking. 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

6.9 LET’S SUM  UP 
 

Recurrence relation breaks the bigger problem into smaller parts in running 

time so its best tool for computer algorithms. It has got application in digital 

signal processing as recurrence can help to model the feedback into the 

system. Linear recurrence relation is widely used in economics. 

 

6.10 KEYWORDS 
 

1. Recurrence sequence - The sequence or series generated by 

recurrence relation  

2. Triangular numbers - any of the series of numbers (1, 3, 6, 10, 15, 

etc.) obtained by continued summation of the natural numbers 1, 2, 

3, 4, 5, etc. 

3. Polynomial - consisting of several terms 

4. Explicit formula - is a formula we can use to find the nth term of a 

sequence 

 

6.11 QUESTIONS FOR REVIEW 
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1. Derive recurrence relation for obtaining the amount An at the end 

of n years on the investment of Rs 10,000 at 5% interest compounded 

annually. 

2. Developing a recurrence formula, find the number of bit strings of length 

4 that do not contain the pattern 111. 

3. Solve the recurrence relation 

     
 

 
      

for the price in the economics model, where a, b, k are positive parameters 

and p0 is the initial price. 

4. Suppose that the population of a village is 100 at time n = 0 and 110 at 

time n = 1. The population increases from time n − 1 to time n is twice the 

increase from time n − 2 to time n − 1. Find a recurrence relation and the 

initial conditions for the population at time n and then find the explicit 

formula for it. 

5. Find the particular solution of the difference equation an + 5an − 1 + 6an − 

2 = 3n
2
 − 2n + 1. 
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6.13 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Explain the concept with example – 6.1 

2. Explain the complete concept  – 6.2 

3. State the concept  (a) --6.4 & (b) – 6.3.1.2 

4. State the concept 6.3.3 

5. Explain the concept --- 6.5.1 - B 

6. Explain the concept --- 6.5.1 - C 
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UNIT 7:  RECURRENCE RELATION 

AND GENERATING FUNCTION 
 

STRUCTURE 

 

 7.0 Objectives 

7.1 Generating Functions Of Sequences. 

7.2 Generating Function Models 

7.3 Recurrence Relations  

7.3.1 Divide & Conquer Recurrence Relation  

7.4 Solution Of Recurrence Relation 

7.5 The Fibonacci Relation 

7.5.1 Properties Of Fibonacci Numbers 

7.5.2 The Pascal's Triangle 

7.6 Other Recurrence Relation Model 

7.7 Solving Recurrence Relations 

7.7.1 By Substitution  

7.7.2 By Generating Functions 

7.7.3 Methods Of Characteristics Roots 

7.7.4 Distinct Roots & Multiple Roots 

7.8 Let‘s sum  up 

7.9 Keywords 

7.10 Question for review 

7.11 Suggested Readings 

7.12 Answer to check your progress 

 

7.0 OBJECTIVE 
 What is a Recurrence Relation? 

 Generating function of sequence  

 Generating function models 

 The Fibonacci Relation and its Properties 
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 Other Recurrence Relation Model 

 Solving Recurrence Relation by Substitution and Generating 

Functions 

 The Method of Characteristics Roots 

 Distinct Roots  and Multiple Roots 

 

7.1 GENERATING FUNCTION OF 

SEQUENCE: 
 

The concept of generating functions is a powerful tool for solving counting 

problems. Intuitively put, its general idea is as follows. In counting 

problems, we are often interested in counting the number of objects of ‗size 

n‘, which we denote by an. By varying n, we get different values of an. In this 

way we get a sequence of real numbers  

a0, a1, a2, … 

 

Here our interest is in the sequence of real numbers (a0, a1, a2, …, ar, …), 

and such function whose domain is the set of nonnegative integers and 

whose range is the set of real numbers.  

 

Expressions like        
  is used to denote such sequences, where aris the 

number of ways to select r objects in some procedure.  

 

Example 1: The sequence 0          
 is the sequence (1,2,4,8,16, …, 2

r
, 

…); the sequence         
 

 

Where  

   {

                         
                         
                             

                              

 

 

Thus, B = (0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 3, 4, 4 …) 
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 ,where Cr = r + 1 for each value of r, is the sequence (1, 2, 3, 4, 

5…)  

and the sequence         
 where for each r dr = r

2
  is the sequence ( 0, 1, 

4, 9, 16, 25 …) 

 

  To the Sequence          
 , we will assign the symbol  

 

                 
  ∑    

 

 

   

 

 

 

 The expression A (X) is called  a formal power series, ai is the 

coefficient of X
i
 , the term ai X

i 
is a term of degree I, and the term a0 

X
0 
= 0 is called the constant term. 

 

 The formal power series      ∑    
  

 is called the generating 

function for the sequence         
  

 We will use the word ‗formal‘ to distinguish between the abstract 

symbol  

     ∑    
  

  and the concept of Power series 

 

Example 2: The generating functions of example 1 

     ∑     

 

   

 

 

B (X) = 2 X
5 
+ 2 X

6 
+ 2 X

7 
+ 2 X

8 
+ 2 X

9 
+ 3 X

10 
+ 4 X

11 
+ 4 X

12 
+ … 

 

     ∑       

 

   

 

     ∑    
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Let      ∑    
  

   ,      ∑    
  

   be two formal power series then 

we can define following concept as follows: 

 

EQUALITY: A (X) = B (X) if and only if an = bn for each n ≥ 0. 

 

MULTIPLICATION BY A SCALAR NUMBER C:      

∑       
  

   
 

 

SUM:            ∑         
  

    

 

PRODUCT:         ∑    
  

   
 

 

o Pn X
n  

 is the product of A(X) B (X) which is obtained by taking the 

sum of all possible products of one term from A(X) and one term 

from B(X) such that n = sum of the exponents 

o Thus, this can be accomplished by considering a0 which is a constant 

term of A (X) and multiply it with the coefficients bn of X
n
 in B(X) 

 

o Proceeding ahead, now coefficient a1 of X in A (X) and multiply it 

by the coefficient bn – 1 of X
n – 1 

 in B(X) and so on. 

o In product we are supposed to use the increasing powers of X in 

A(X) while decreasing powers of X in B(X) 

o So we get 

 

Pn  = a0 bn + a1 bn – 1 + a2 bn – 2 + … + an b0 = ∑       
 
    

Thus,  

A(X)B(X) = a0 b0 +( a0 b1 + a1 b0 ) X + ( a0 b2 + a1 b1 + a2 b0 ) X
2
 + 

…+(a0 bn + a1 bn – 1 + a2 bn – 2 + … + an b0 ) X
n
 + … 

 

Example: If S (X) = a0 + a2X
2
 + a4X

4
 + a8X

8
 and  

        T (X) = b0 + b4X
4
 + b6X

6
 + b8X

8 
 (we assume the 

coefficients for the missing power of X is zero) 
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o Then we can find the coefficient of X
r
 in S(X) T(X) by 

considering the powers { X
0
,X

2
,X

4
,X

8
 } from the first factor 

and the powers { X
0
,X

4
,X

6
,X

8
 } from the second factor such 

that there sum is r. 

o For instance the coefficient of X
8 
can be obtained by using X

0
  

in the first factor and X
8 
 in the second; X

2
  in the first factor 

and X
6 
 in the second.  

o Thus, the coefficient of X
8
 in the product S(X) T(X) is such 

that  

o P8 = a0b8 + a2b6 + a4b4 + a8b0 , because (0, 8), (2, 6), (4, 4), 

and (8, 0) are the only pairs of exponents of S(X) and T(X) 

whose sum is 8. 

o Likewise the coefficient of X
6
 in the product is a0 b6  + a2 b4  , 

because there are only two pair of exponent of S(X) and T(X) 

, whose sum is 6. 

 

 Thus, if  a0 = 2, a2 = - 5, a4 = 7 + a8 = 3 

 b0 = 3, b4 = - 6, b6 = 8, b8 = 3 then 

P8 = (2)(3) + (-5) (8) + (7) (-6) + (3)(3) = - 67, 

 

The case where the entire non-zero coefficients are 1 is of 

special interest. 

We will have P8 = 4 

 

We can now conclude that the coefficient of X
8 
in the product is just the 

number of pairs of exponents whose sum is 8 or in other words the number 

of integral solutions to the equation e1 + e2  = 8, where e1 and e2 represent 

the exponents of S(X) and T(X), respectively. 

 

  Remarks: 
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a. The coefficient of X
r
 in the product (1 + X

2
 + X

4
 + X

8
)( 1 + X

4
 + X

6
 + 

X
8
) is the number of integral solution to the equation e1 + e2  = r subject 

to the constraints e1 = 0,2,4,8 and  e2 = 0, 4, 6, 8. 

b. The exponents of the factors in the product reflect the constraint in the 

equation. 

c. We can compute the coefficient of  X
r 
 by algebra and then discover the 

number of integral solutions to the equation e1 + e2  = r  subject to the 

constraints ; or 

d. We can compute all the solutions of the equation subject to the 

constraints and then discover the coefficient of X
r
. 

 

Check Your Progress 1 

1. What do you understand by Generating Functions? 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2. Explain the concept of Power series and Equality 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

 

7.2 GENERATING FUNCTION MODELS: 
 

 Let us consider the product of generating function A(X) and B(X), 

where the exponents of A(X) reflect the constraints on e1and the 

exponents of B(X) reflect the constraints on e2.  

 X
r
 is the coefficient of the product of generating function A(X) B(X) 

 Assume e1 can only be 0, 1, 9 then let A(X) = 1 + X + X
9
. If e2 can 

only be even and 0≤ e2 ≤ 8,then B(X) = 1 + X
2
 + X

4
+ X

6
 + X

8
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 And if e1can be any non-negative integer value, then we let 1 + X + 

X
2
 + …[ A(X) has infinite number of terms] . Also, if e2 can only 

take on the integral values like that are multiples of 5, then we let B 

(X) = 1 + X
5
 + X

10
 + … Hence, we can see endless possibilities. 

 

Now we can extend the definition of product of formal power series for 3 

factors as below: 

     ∑   
 

 

   

 

     ∑   
 

 

   

 

     ∑   
 

 

   

 

 

 Then 

             ∑   
 

 

   

 

    

where  

   ∑       

       

 

  

 

Thus, we can find the term Pr X
r 
 by taking any one term ai X

i 
 from A(X), 

any one term bj X
j  

from B(X) and any one term ck X
k 
 from C(X) such that 

the sum of exponents i + j + k = r. 

Assume each non zero coefficient of each formal power series Ai(X) is 1. 

Then we have the coefficient of X
r
 in the product A1(X) A2(X) … An(X) 

indicates the number of integral solution to the equation e1 + e2 + … + en = r 

where constraints on each ei is determined by the exponents of the i
th

 factor 

of Ai(X). 
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Conversely if we are supposed to count the number of non-negative integral 

solutions to an equation e1 + e2 + … + en = r  with constraints on each ei  then 

we can build a generating function A1(X) A2(X) … An(X) whose coefficient 

of X
r
 is the answer. 

 

Example 1: Find a generating function for ar = the number of non- negative 

integral solutions of e1 + e2 + e3 + e4 + e5 = r where 0 ≤ e1 ≤ 3, 0 ≤ e2 ≤ 3, 2 ≤ 

e3 ≤ 6 , 2 ≤ e4 ≤ 6, e5  is odd, and 1 ≤ e5 ≤ 9.   

Let A1(X) = A2(X) = 1+ X + X
2
 + X

3
 , A3(X) = A4(X) = X

2
 + X

3
 + X

4 
+ X

5
 + 

X
6 
 and  

A5(X) = X + X
3
 + X

5 
+ X

7
 + X

9
 . Thus, the generating function we want is  

 A1(X) A2(X) A3(X) A4(X) A5(X) = (1+ X + X
2
 + X

3
)
2
 

      (X
2
 + X

3
 + X

4 
+ X

5
 + X

6 
)
2 

      (X + X
3
 + X

5 
+ X

7
 + X

9
). 

 

Example 2: Find a generating function for ar = the number of non- negative 

integral solutions of e1 + e2 +…+ en = r where 0 ≤ ei ≤ 1. 

Let Ai(X) = 1 + X for each i = 1, 2, …, n. Thus, the generating function we 

want is A1(X) A2(X) … An(X) = (1 + X)
n
 .  

As per the binomial theorem the answer to above is C(n, r) – the coefficient 

of X
r
 term. 

 

Example 3: Find the coefficient of X
16

 in ( 1 + X
4
+ X

8 
)
10

. 

The only solution to e1 + e2 + … + e10 = 16 where ei = 0, 4, 8 are those with 

four 4‘s, no 8‘s and six 0‘s or two 8‘s, no 4‘s and eight 0‘s; or two 4‘s, one 

8, and seven 0‘s. Thus, the coefficient is 

(
  

 
)  (

  

 
)   (

  

 
)  (

  

 
)   (

  

 
) 

 

Example 4: Build a generating function for determining the number of ways 

of making change for a dollar bill in pennies, nickels, dimes, quarters, and 

half- dollar pieces. Which coefficient do we want? 

We can find the coefficient of X
100 

 in the product of  
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 (1 + X + X
2
 + … + X

100
) 

 (1 + X
5
 + X

10
 + … + X

100
) 

 (1 + X
10

 + X
20

 + … + X
100

) 

 (1 + X
25

 + X
50

 + X
75

 + X
100

) 

 (1 + X
50

 + X
100

). 

 

Example 5: Find a generating function for the sequence          
 where 

  1   if 0 ≤ r ≤ 2 

 A =  3   if 3 ≤ r ≤ 5 

  0   if r ≥ 6 

 

Solution: 1 +  X + X
2
 + 3X

3
 + 3 X

4
 + 3X

5  

 

7.3 RECURRENCE RELATIONS: 
 

CONCEPT: A recurrence relation is a formula that relates for any integer n 

≥ 1, the n-th term of a sequence          
 to one or more of the terms a0, 

a1,… an-1. 

 

Examples:  

1. If sn denotes the sum of the first n positive integers, then sn  = n + sn – 

1 is a recurrence relations. Other examples are: 

2. If d is a real number, then the n
th

 term of an arithmetic progression 

with common difference d satisfies the relation an =  an-1 + d. 

3. If  pn denotes the n
th

 term of a geometric progression with common 

ratio r, pn = r pn – 1 is a recurrence relation. 

 

CONCEPT:  

 Let n and m are non-negative integers. A recurrence relation of the 

form  

 c0 (n) an + c1 (n) an – 1 +… + cm (n) an – m = ƒ(n) for n ≥ m, where c0 

(n), c1 (n), …, cm (n)  and ƒ(n) are functions of n  is said to be Linear 

Recurrence Relation. 
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 If c0 (n) and cm (n) are not identically zero, then it is said to be 

Linear Recurrence Relation of degree m. 

 

 If c0 (n), c1 (n), …, cm (n) are constants, then it is known as Linear 

Recurrence Relation with constant coefficient. 

 

 If ƒ(n) is identically zero then it is called as Homogenous; Otherwise 

Inhomogenous. 

 

Example: an – 9 an – 1 + 26 an – 2  – 24 an  - 3 = 5n      

  Linear Recurrence Relation with constant 

coefficient. 

pn = r pn – 1  Linear Recurrence Relation of degree 2 

 

an – 4 an-1 + 2 an- 2 = 0    Homogenous 

 

7.3.1 Divide And Conquer Recurrence Relation: 

A divide-and-conquer algorithm consists of three steps: 

• dividing a problem into smaller sub-problems 

• solving (recursively) each sub-problem 

• then combining solutions to sub-problems to get solution to original 

problem. 

We use recurrences to analyze the running time of such algorithms. Suppose 

Tnis the number of steps in the worst case needed to solve the problem of 

size n. Let us split a problem into a ≥ 1 sub-problems, each of which is of 

the input size n/b where b >1. 

Observe, that the number of sub-problem a is not necessarily equal to b. The 

total number of steps Tnis obtained by all steps needed to solve smaller sub-

problems Tn/bplus the number needed to combine solutions into a final one. 

The following equation is called 
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Divide-and-conquer recurrence relation 

              

 

As an example, consider the mergesort: 

-divide the input in half 

-recursively sort the two halves 

-combine the two sorted subsequences by merging them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let Tnbe worst-case runtime on a sequence of nkeys: 

If n = 1, then            constant time 

If n >1, then        (
 

 
)       

here      is time to do the merge. Then 

                

 

Check your progress 2 

1. What is Linear Recurrence Relation? 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 
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2. Explain Divide and Conquer Relation 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

7.4 SOLUTION OF RECURRENCE 

RELATION: 
 

 To solve an equation like x
2 
– 7x + 10 = 0, we are supposed to find 

all those values of X which satisfy this quadratic equation. 

 By using quadratic formula or factoring we get x = 2 and x = 7 that 

satisfy the above equation. 

 Let an – 3 an – 1 = 0 for n ≥ 1 be the recurrence relation  

o We are aware that          
 is a function from the non-

negative integers into the real numbers. 

o Recurrence relation describes the relation between the values 

of the function at n and n – 1. 

o Yes there is a function, defined with domain the set of non-

negative integers, which makes the equation true for every 

value of n. 

o It is shown as         
  where an = 3

n
 for n ≥ 0. 

o For this function we have an – 3 an – 1 = 3
n 
– 3(3

n – 1 
) = 0 for n 

≥ 1, so that this function satisfies the recurrence relation. 

o There are possibilities of more solutions like if c is any 

constant the function        
 where  an  = c3

n  
for n ≥ 0 also 

satisfy the above recurrence relation as  an – 3 an – 1 = c 3
n 

– 3c 

(3
n – 1 

) = 0 for n ≥ 1 

 

CONCEPT: Suppose that S is a subset of the non-negative integers. Then a 

sequence A =        
 is a solution to a recurrence relation over S if the 

values an of A make the recurrence relation a true statement for every value 
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of n in S. If the sequence          
 is a solution of a recurrence relation, 

then it is said to satisfy the relation. 

 

Example: If c1 and c2are arbitrary constants, then an  = c1 2
n
 + c2 5

n
 satisfies 

the recurrence relation:  

an – 7 an – 1 + 10 an – 2  = 0 over the set S of integers n ≥ 2. Substituting this 

expression for an into the recurrence relation, we have 

an – 7 an – 1 + 10 an – 2  = (c1 2
n
 + c2 5

n 
) – 7 (c1 2

n – 1
 + c2 5

n – 1 
) + 10 (c1 2

n – 2 
+ 

c2 5
n – 2 

) 

    = c1 2
n
 – 7c1 2

n – 1
  + 10 c1 2

n – 2 
 + c2 5

n
 – 7 c2 5

n – 1 
 + 10 

c2 5
n – 2 

 
   = c1 2

n – 2 
  [ 2

2
 – 7(2) + 10] + c2 5

n – 2
 [5

2
 – 7(5) + 10] 

   =  c1 2
n – 2 

  (0) + c2 5
n – 2

 (0)  

   = 0 

o Boundary conditions are requirements that must be satisfied in 

addition to that of satisfying the recurrence relation. 

 

 

Consider an  = c1 2
n
 + c2 5

n
, if we set n = 0 and n = 1, then 10 = a0 = c1 2

0
 + c2 

5
0
 = c1 + c2  and  41 = a1 = c1 2

1
 + c2 5

1
 =  2c1 + 5c2 .  

 

Thus the constant c1 and c2  satisfies the equations 

  10 = c1 + c2         and    41 = 2c1 + 5c2 

 

When we solve these two above equation we get c1= 3 and c2 = 7. 

 

Thus, an  = (3)2
n
 +( 7) 5

n
is a solution of recurrence relation that satisfy the 

boundary conditions. 

o If a linear recurrence relation of degree m has a constant coefficient 

then there will not be a unique solution. 

o If there is some integer n0 such that the values for an0 ,an1 , … , an0 +m – 

1   are given then there will be a unique solution of the linear 

recurrence relation of degree m satisfying these boundary conditions. 
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Usually the values for a0 ,a1 , … , am – 1   are given which is known as 

initial condition. 

 

7.5 THE FIBONACCI RELATION: 
 

 Let us consider one problem to understand the Fibonacci relation. 

Suppose that there is one pair of squirrels, one male and one female, just 

born, and suppose, further, that every month each pair of squirrels (whose 

age is more than one month old) produces a new pair of offspring of 

opposite sexes. Find  the number of squirrels after 12 months and after n 

months? 

 Firstly, we will consider one new born pair of squirrels.  

 

Duration Number of Pairs 

of Squirrel 

Reason 

After 1 month ONE As they are not mature to 

reproduce 

 

After 2 month TWO Now the first pair has reproduced 

 

After 3 months THREE Again the first pair has 

reproduced; second pair is yet to 

mature 

 

After 4 months FIVE Again the First has reproduced;  

second pair has reproduced;  

third is yet to mature 
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 Thus, for each integer n ≥ 0, let Fn  denote the number of pairs of 

squirrels alive at the end of the nth month. Here F0 = 1 as the 

original number of pairs of squirrels is one. 

 

 We have F0 = 1 = F1 ,  F2 = 2, F3 = 3 and F4 = 5 from the above 

table. 

 

 So Fn is formed by starting with Fn – 1  pairs of squirrels alive last 

month and adding the offspring‘s that can only come from the Fn 

–2  pairs alive 2 months ago. So we have  

Fn = Fn – 1 +  Fn –2  is the recurrence relation and F0 = F1 = 1 are the 

initial condition. 

 

 Using the above relation and the values of F2 = 2, F3 = 3 and F4 = 

5, we get 

 F5  = F4  + F3 = 5 + 3 = 8, 

 F6  = F5  + F4 = 8 + 5 = 13 

 F7  = F6  + F5 = 13 +8 = 21 

 F8  = F7  + F6 = 21 + 13 =34 

 F9  = F8  + F7 = 34 + 21= 55 

 F10  = F9  + F8 = 55 + 34 = 89 

 F11  = F10  + F9 = 89 + 55 = 144 

 F12  = F11  + F10 = 144 + 89 = 233. 

So we have 233 pairs of squirrels alive after 12 months. 

 The relation Fn = Fn – 1 +  Fn –2  is called the Fibonacci relation. 

 

 The numbers  Fn  generated by the Fibonacci relation with the 

initial conditions F0 = F1 = 1 is called as Fibonacci numbers. 

 

 The sequence of Fibonacci numbers        
 is the Fibonacci 

Sequence. 
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² ² ² 

7.5.1 Properties Of Fibonacci Numbers: 

We will try to figure out the compact formula for the sum Sn = F0 + F1 + … 

+ Fn . The following table below shows that S0 = 1 = F2 – 2 ; S1 = 2 = F3 – 1 

and S2 = 4 = F4 – 1; 

 

N 0 1 2 3 4 5 6 7 

 

Fn 1 1 2 3 5 8 13 21 

 

Sn 1 2 4 7 12 20 33 54 

 

 

 This leads us to conjecture that: 

1. The sum of the first n + 1 Fibonacci numbers is one less than Fn + 

2, that is F0 + F1 + … + Fn = Fn + 2 – 1. 

PROOF: Write the numbers in an array as follows: 

 F0 =  F2  –  F1 

 F1 =  F3  –  F2 

 F2 =  F4  –  F3 

 F3 =  F5  –  F4 

  . . 

  . 

 Fn =  Fn + 2  –  Fn + 1 

If we add all these equations, we will get F0 + F1 + F2 + … + Fn = 

Fn + 2 – F1. But F1 = 1 

 

2.  F0 + F2 + F4 +  … + F2n = F2n + 1 

 

3. F0 + F1 + … + Fn = Fn Fn + 1 
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THEOREM:  General Solution to the Fibonacci Relation. 

If  Fn satisfies the Fibonacci relation Fn = Fn – 1 + Fn – 2  for n ≥ 2, then there 

are constants C1 and C2 such that 

     (
  √ 

 
)

 

   (
  √ 

 
)

 

 

  

where the constants are completely determined by the initial conditions. 

 

PROOF: Let      ∑    
  

    be the generating function for the 

sequence        
 

. Then, 

               
     

       
    

             
     

         
    

          
     

     
         

    

 

Subtracting the last two equations from the first we will get the following 

results: 

                 

                        
             

 

                  
    

                       

              

  

Thus, 

     
           

      
 

 

 
           

[  
   √  

  ][  
   √  

  ]

 

    

Thus, for whatever initial conditions on F0 and F1, the method of fraction 

applies to give 
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     √     
 

  

     √     
 

 

Using the identities for geometric series we see that if      √     

and     √     then, 

 

     
  

    
 

  

    
   ∑        ∑     

 

   

 

   

 

 

  ∑     
     

     ∑    
  

   
 
      

 

In other words, 

      
     

    [   √    ]    [   √    ] for each n ≥ 0. 

 

If we have given the initial condition we can find  

   
 

√ 
(
  √ 

 
)         

  

√ 
(
  √ 

 
) 

 

So in this case, the nth Fibonacci number is  

   
 

√ 
[(

  √ 

 
)

   

 (
  √ 

 
)

   

] 

 

 

 

Pascal’s triangle states that states the sum of the elements which lie on the 

diagonal running upward from the left are Fibonacci numbers. We can 

illustrate this as: 

 

 F0 1 

` F1 1 1 

 F2 1 2 1 

 F3 1 3 3 1 
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∟
 

 F4 1  4 6 4 1 

 F5 1 5 10 10 5 1 

 F6 1 6 15 20 15 6 1 

 

We have the identity Fn = C(n, 0) + C(n – 1, 1) + C (n – 2, 2) + … + C (n – 

k, k) where for k = n / 2 , we find greatest integer in the selection. 

 

To prove the above relation we define qn  =  C(n, 0) + C(n – 1, 1) + C (n – 2, 

2) + … + C (n – k, k) for n ≥ 0and k = ∟n / 2 

 

If we consider that C(m , r) = 0 for r > m, then we can write 

qn  =   C(n, 0) + C(n – 1, 1) + C (n – 2, 2) + … + C (n – k, k) + C (n – k – 1, 

k + 1) + … + C (0, n). 

We are supposed to prove that qn satisfies the Fibonacci relation and that q0 = 

1 = q1 but q0 = C( 0, 0) = 1 and q1 = C (1, 0) + C(0, 1) = 1.  

Using Pascal identity, we get following equation for n ≥ 2. 

qn – 1   + qn – 2  =   C ( n – 1, 0) + C ( n – 2, 1) + … + C (0, n – 1 ) + C ( n – 2, 

0) + C (n – 3, 1) + …  +C (0, n – 2) 

                       = C ( n – 1, 0) + [C ( n – 2, 1) + C (n – 2,0) ] + [C ( n – 3, 1) + 

C (n – 3,2) ] + …   + [C (0, n – 1) + C (0, n – 2)] 

                      =   C ( n – 1, 0) + C ( n – 1, 1) + C ( n – 2, 2) + … + C ( 1, n – 

1) 

                     = C (n, 0) + C ( n – 1, 1) + C ( n – 2, 2) + … + C( 1, n – 1 ) + 

C(0, n) = qn. 

 

7.6 OTHER RECURRENCE RELATION 

MODEL: 
 

Example 1: Let P represent the principal borrowed from a bank, let r equal 

the interest rate per period, and let an represent the amount due after n 

periods. 

Then an  =  an – 1  + r an – 1   = ( 1 + r) an – 1. 
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In particular a0  =  P, a1  =  ( 1 + r) P, a2  =  ( 1 + r) a1 = ( 1 + r)
2
 P and so on, 

so that  

an = ( 1 + r)
n
 P. 

 

Example 2: Two armies engage in combat. Each army counts the number of 

men still in combat at the end of each day.  

o Let a0 and b0 denote the number of men in the first and the second 

army, respectively, before the combat begins, and  

o Let an and bn denote the number of men in the two armies at the end 

of the nth day.  

o Thus, an – 1  – an  represents the number of soldiers lost by the first 

army during the battle on the nth day. 

o Similarly, bn – 1  – bn  represents the number of soldiers lost by the 

first army during the battle on the nth day. 

o From above condition, we can conclude that  

o Decrease in the number of soldiers in each army is proportional to 

the number of soldiers in the other army at the beginning of each 

day. 

o So we have constants A and B such that an – 1  – an   = Abn – 1  and  bn – 

1  – bn  =  B bn – 1   

o These constants measure the effectiveness of the weapons of the 

different armies.  

o We can also rewrite this as below: 

a = an – 1  –  Abn – 1    and  b = –  Ban – 1  + bn – 1   

which represents very much reminiscent of two –linear equation in 

two unknowns. 

 

Example 3:  Find a recurrence relation for the number of n-digit ternary 

sequences that have an even number of 0‘s. 

o If the first digit is not 0, then there are 2 an – 1   (n – 1) digit such 

ternary sequences. If the first digit is 0, then we must count the 

number of (n – 1)- digit ternary sequences that have an odd number 

of 0‘s. 
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o Since there are 3
n – 1

  total (n – 1)- digit ternary sequences and an – 1  

with an even number of 0‘s and that start with 0. 

o Thus, an = 2 an – 1  + 3
n – 1

 – an – 1  = an – 1   + 3
n – 1

 

 

Example 4: Suppose a coin is flipped until 2 heads appear and then the 

experiment stops. Find a recurrence relation for the number of experiments 

that end on the nth flip or sooner. 

o an = an – 1  + ( n – 1) 

 

7.7 SOLVING RECURRENCE RELATION: 
 

We will consider the following example to clarify the different methods. 

 

1. Solve the recurrence relation an = an – 1 + ƒ (n) for n ≥ 1 by 

substitution. 

 a1=a0 + ƒ (1) 

 a2 =a1 + ƒ (2) = [a0 + ƒ (1)] + ƒ (2) 

 a3 =a2 + ƒ (3) = [a0 + ƒ (1) + ƒ (2)] + ƒ (3) 

   . 

   . 

   . 

 an  = a0 + ƒ (1) + ƒ (2) + …+ ƒ (n) 

 

      ∑      
  

Moreover generally, if c is a constant then we can solve a0 = can- 1 + ƒ 

(n) for n ≥ 1 in the same way: 

 a1=c a0 + ƒ (1) 

 a2= c a1 + ƒ (2) = c [c a0 + ƒ (1)] + ƒ (2) 

      = c
2
 a0 + c ƒ (1) + ƒ (2) 

 a3 =c a2 + ƒ (3) = c [c
2
 a0 + c ƒ (1) + ƒ (2) ] + ƒ (3) 

  = c
3
 a0 + c

2
 ƒ (1) + c ƒ (2) + ƒ (3) 

   . 

   . 
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   . 

 an = c an – 1  + ƒ (n) = c[ c
n - 1

 a0 + c
n – 2

 ƒ (1) + …+ c 

ƒ (n – 2) + ƒ (n – 1) + ƒ (n ) 

  = c
n – 1

a0 + c
n – 1

 ƒ (1) + c
n – 2

 ƒ (2) + …+ c ƒ (n – 

1) + ƒ (n ) 

Or 

 

        ∑  

 

   

     

 

7.7.1 Solution By Generating Functions: 

First we will try to understand the shifting properties of generating 

functions: 

o If      ∑    
  

   generates the sequence (a0, a1, a2, …),  

o Then X A(X) generates the sequence (0, a0, a1, a2, …); 

o X
2
 A(X) generates the sequence (0,0, a0, a1, a2, …);  

o In general, X
k
 A(X) generates the sequence (0, 0…0,a0, a1, a2…) 

where there are k zeros before a0. 

o If A(X) is the generating function for the sequence (a0, a1, a2…), then 

multiply A(X) by X amounts to shifting the sequence one place to 

the right and inserting a zero in front.  

o Similarly if we multiply by X
k
 amounts to shifting the sequence k 

positions to the right and inserting k zeros in front. 

o The above process can be demonstrated in the formal power series 

expression as follows: 

         ∑    
 

 

   

   ∑     
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o If we replace n + k by r and then we will have n = r – k  so we have 

new equation after substitution as ∑      
  

    which signifies that 

it generates the sequence  

       
 where  

0 = b0 =b1 = … = bk- 1, bk = a0, bk + 1 = a1 and in general br = ar – k if r 

≥ k. 

Thus, the nth term in the new sequence is obtained from the old 

sequence by replacing 

 an = an – k  if n ≥ k and by 0 if n < k. 

o For instance, we know that 1 / (1 – X) =∑    
   generates the 

sequence (1, 1, 1, …) , that is, the sequence        
 where an = 1 for 

each n ≥ 0. 

o Thus, 

 

   
 ∑     

 

   

 ∑  

 

   

 

 

Generates (0, 1, 1, 1, …) and  

  

   
 ∑     

 

   

 ∑  

 

   

 

 

Generates (0,0, 1, 1, 1, …). Similarly, 

 

      
 ∑           

 

   

 ∑       

 

   

 

 

Generates the sequence (1, 2, 3, 4 …) so that  

 

      
 ∑         

 

   

 ∑   

 

   

 

Generates the sequence       
 = (0, 1, 2, 3, 4…). 

[∑     
    describes the coefficient of X

0
 is 0 because the sum is 

taken from r = 1 to ∞, but still we get same conclusion] 

So we can write 
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 ∑   

 

   

       ∑   

 

   

 

Both the above expression indicates that the coefficient of    is zero. 

Similarly,  

  

      
 ∑         

 

   

 ∑       

 

   

 

 

Generates the sequence (0, 0, 1, 2, 3, 4…) that is the sequence 

       
 where br  = r – 1 if r ≥ 2 but 0 = b0 = b1 . Since, the 

expression br = r – 1 equal to zero when r = 1, we can write the 

expression 
  

      
 ∑         

   as∑         
   . 

Following the above procedure, 

 

      
 ∑            ∑

          

 
  

 

   

 

   

 

 

generates the sequence 

 

{
          

 
}
   

 

 (
   

 
 
   

 
 
   

 
  )  

 

and therefore, 

 

      
 ∑            

 

   

 

generates  

               
                   

 

But then, 

  

      
 ∑               ∑          

 

   

 

   

 

 

generates the sequence (0, 1.2,2.3,3.4,…). 
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Now since             equals 0 where r = 0, we can write 

  

      
 ∑          

 

   

 ∑          

 

   

 

so that 
  

      
 generates               

  

Similarly, 

   

      
 ∑               ∑          

 

   

 

   

 ∑          

 

   

 

generates the sequence (0,0,1.2,2.3,3.4,…) and the last sum can be 

taken from 0 to   because the coefficient r ( r – 1) is 0 when r = 0, 1. 

In this way, we can combine these results to obtain generating 

functions for other sequences. 

For example, 

  

      
 

 

      
 

      

      
 

generates the sequence                 
          

  

            

In the similar way, 

 

 

      
 ∑            ∑

               

 
  

 

   

 

   

 

generates {
               

 
}
   

 

 
 

      
 generates               

      
   

 

  

      
 ∑                   

 

   

 

 ∑               

 

   

 

 ∑               
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generates                    
      

 

   

      
 ∑                   

 

   

 

 ∑               

 

   

 

 ∑               

 

   

 

 

generates                    
  

Since                              then    

                          so that        
 is generated by  

 

      
 

         

      
   

 

      
 

 

     
 

          

      
 

In similar way we can find the generating functions for the 

sequences       
         

 and so on. 

 

2. If      ∑    
  

    generates the sequence (a0, a1, a2, …), then  

 

        ∑    
  

    generates the sequence (0, a1, a2, …) and in 

general  

 

                   
    ∑    

  
   generates( 0, 0, 

…,0, ak, ak+ 1…), where there are k zeros before ak.But when we 

divide it by powers of  X shifts the sequence to the left like for 

example, 
       

 
 ∑    

    
    generates the sequence 

            ; 
           

   generates             ; and inn 

general for    , 

                   
   

    generates                . 
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Similarly, if we substitute n – k = r and the expression 

                   
   

   ∑    
    

   becomes 

∑      
   

   which in the original sequence is replaced by      for 

each n, indicating that the sequence has been shifted k places to the 

left. 

 

            Example 1: Solve the recurrence relation  

                  for n ≥ 0 

We will number the steps of the procedure. 

1. Let      ∑    
  

   . 

 

2. Next multiply each term in the recurrence relation by X
n
  and 

sum from 2 to ∞: 

∑    
 

 

   

  ∑      
 

 

   

   ∑      
 

 

   

   

 

3. Replace each infinite sum by an expression from the table of 

equivalent expressions: 

 [A(X) – a0 – a1X] – 7 X [A(X) – a0] + 10 X
2 
[A(X)] 

 

4. Then simplify: 

 

A(X) (1 – 7 X + 10 X
2
) = a0  +  a1X – 7 a0X  or  

 

     
            

         
 

            

            
 

 

5. Decompose A(X) as a sum of partial fractions: 

     
  

    
 

  

    
 

 

where C1 and C2 are constants, as yet undetermined. 

 



Notes 

191 

6. Express A(X) as a sum of familiar series: 

 

     
  

    
 

  

    
   ∑       ∑     

 

   

 

   

 

 

7. Express  an  as the coefficient of  X
n
  in A(X) and in the sum of 

the other series: 

   an =  C1 2
n  

+ C2 5
n
 

8. Now the constants C1 and C2 are uniquely determined once values 

for a0  and a1 are given. For example, if a0  = 10 and a1 = 41, we 

may use form of the general solution  an =  C1 2
n  

+ C2 5
n
 , and let 

n = 0 and n = 1 to obtain the equations 

 

C1 + C2 = 10  and   2C1 + 5C2 = 41, 

 

which determine the values  C1 = 3 and  C2 =7.  

 

 The unique solution of the recurrence relation is an =  (3)2
n  

+ 

(7)5
n
 

 

 

THEOREM: If        
  is a sequence of numbers which satisfy the linear 

recurrence relation with constant coefficients an + c1 an - 1  + … +  ck an - k  = 

0, where     , and   

n ≥ k, then the generating function      ∑    
  

    equals P(X) / Q(X),  

where P(X) = a0 + (a1 + c1 a0  ) X + … +( ak- 1  + c1 ak - 2  + … +  ck – 1  a0) X
k – 

1  
and  

Q(X) = 1 + c1 X + … + ck X
k
. 

Conversely, If P(X) and Q(X) are polynomials given, where P(X) has 

degree less than k, there is a sequence        
 whose generating function is 

A(X) = P(X) / Q(X). 
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The sequence        
 satisfies a linear homogenous recurrence relation with 

constant coefficients of degree k, where the coefficients of the recurrence 

relation are the coefficients of Q(X). 

   

In fact, if Q(X) = b0 + b1 X + … + bk X
k
 where     and    

 then 

          
  

  
    

  

  
    

               
   

where ci = bi/ b0 for i ≥ 1. Then 

     
    

    
 

 
  

    

           
 

and the coefficient of A(X) are discovered by using partial fractions and the 

factors of  

1 + c1 X + … + ck X
k
. then the recurrence relation satisfied by the 

coefficients of A(X) is  

an + c1 an- 1 + … + ck an – k = 0. 

 

Example:  Solve the following recurrence relations using generating 

functions. 

 

a. an – 9an- 1  + 20an- 2 = 0  for n ≥ 2 and a0 = – 3, a1 =  – 10 

b. an – 5an- 1  + 6an- 2 = 0  for n ≥ 2 and a0 = 1 , a1 =  – 2 

c. an – 3an- 2  + 2an- 3 = 0  for n ≥ 3 and a0 = 1, a1 =  1, a2 =  2. 

d. an + an- 1 –  16 an- 2+ 20an- 3   = 0  for n ≥ 3 and a0 = 1, a1 =  1, 

a2= - 1  

Solution: 

a. an = 2.5
n 
– 5.4

n
 

b. A(X)  = [1 – 7 X] / [1 – 5X + 6 X
2
]   

 = [ 5 / 1 – 2X] – [  4 / 1 – 3X]; 

an = 5(2
n
) – 4(3

n
) 

c. an = 8 / 9 – 6/ 9 n + 1/ 9 ( - 2 )
n
 

d. A(X)    = [X / 1 + X – 16X
2
 + 20 X

3
]  
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n n 

 
     

    
 

    

       
 

    

    
 

                                     

 

7.7.3 The Method Of Characteristic Roots: 

o Consider the example 1 of previous section where the denominator 

Q(X) = 1 – 7X + 10 X
2
 and the general solution for an was  an = C1 2

n
 

+ C2 5
n
   because Q(X) factors as ( 1 – 2X) ( 1 – 5X). Note that the 

roots of Q(X) were 1 / 2 and 1 / 5 while the solutions involve powers 

of their reciprocals.  

o To avoid this reciprocal  relationship, let us consider another 

polynomial where we will replace X in Q(X) by t
2
 to obtain the 

polynomial 

  C(t) = t
2 
Q(1 /t)  = t

2 
[ 1 – 7( 1/ t) + 10 ( 1/ t)

2
 ]  

     =  t
2 
– 7 t + 10 

     = ( t – 2) ( t – 5) 

Thus, the roots of the above polynomial , 2 and 5 are in direct 

relationship with the form of the solution for an = C1 2
n
 + C2 5

n
 . 

o The polynomial C(t) is known as the characteristics polynomial of 

the recurrence relation. 

o If the recurrence relation is an + c1 an- 1 + … + ck an – k = 0 for n≥ k , 

where ck   0, then the characteristics polynomial for this recurrence 

relation is  

 C(t) = t
k
 + c1 t

k- 1 
+ …+ ck and this in turn equals to t

k 
Q(1/ t), 

where Q(X) = 1 + c1 X  + …+ ck X
 k 

. then if C(t) factors as (t – α1)
r1 

…(t – αs)
rs
 , then in the expression A(X) = P(X) / Q(X), the 

denominator Q(X) factors as (1 – α1 X)
 r1

… (1 – αs X)
 rs 

 

DISTINCT ROOTS: 

If the characteristics polynomial has distinct roots α1… αk , then 

general form of the solutions for the homogenous equation is an = C1 
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α1 +  …+ Ck αk  where C1, C2 , … , Ck are constants which may be 

chosen to satisfy any initial conditions. 

 

Example: To solve an – 7 an – 1  + 12 an – 2  = 0 for n ≥ 2, the 

characteristics equation is   

C(t) = t
2
 – 7t + 12= ( t – 3) ( t – 4).  

Thus, the general solution is an = C1 3
n
+ C2 4

n
. 

 If the initial condition are a0 = 2,  a1 = 5, then we should follow to  

the steps below: 

  C1+ C2 = 2 and   3C1+ 4C2 = 5 

So we get C1 = 3 and C1 =  – 1, and the required solution is  

  an = (3) 3
n
–  4

n
. 

 

7.7.4 Distinct Roots &Multiple Roots: 

Example: Write the general form of the solutions to  

a. an – 6 an – 1  + 9 an – 2  = 0 

b. an – 3 an – 1   + 3 an – 2   – an – 3 =  0 

c. an – 9 an – 1 + 27 an – 2 – 27 an – 3  = 0 

 

 Since the characteristics polynomial in (a) is t
2
 – 6 t + 9 = ( t – 3)

2 
the 

general solution in the form an = D1 3
n
+ D2 n 3

n
. 

 Likewise the characteristic polynomial for (b) is t
3
 – 3t

2
 + 3t – 1 = (t 

– 1)
3
 so the general solution is an = D1+ D2 n + D3 n

2
 

 In (c) the characteristic polynomial is t
3
 – 9t

2
 + 27t – 27 = (t – 3)

3
 

then the general solution is an = D1 3
n
+ D2 n3

n
 + D3 n

2
 3

n
. 

 

THEOREM: 

Let the distinct roots of the characteristic polynomial ,  C(t) = t
k
 + c1 

t
k- 1

+ … + ck of the linear homogenous recurrence relation, an + c1 an – 

1 + … + ck an – k = 0,where n ≥ k and ck  = 0 be 
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n 

  α1, α2 , …, αs where s ≤ k. Then there is a general solution for an 

which is in the form, U1 (n) + U2(n) + …+ Us (n) where Ui (n) = ( Di0 

+ Di0 n+ Di0 n
2
+ …+ Dim – 1  n

mi – 1
  )αi 

           and where mi is the multiplicity of the root αi. 

 

EXAMPLE:  

1. Suppose that the characteristic polynomial for a linear 

homogenous recurrence relation is (t – 2 )
3
 (t – 3)

2 
(t – 4)

3. 
Then 

the general solution is an = (D1 + D2 n+ D3n
2
 ) 2

n 
+ (D4 + D5n) 3

n
 

+ ( D1 + D2 n+ D3n
2
) 4

n
.  

2. Do the same for the recurrence relation an – 5an – 1 + 8 an – 2  – 4 an 

– 3   = 0 for  

n ≥ 3. 

C(t) = t
3 
– 5t

2 
+ 8t – 4  

        = (t – 2)
2 

(t – 1 ) 

3. What is the solution to the recurrence relation an = 2a
n−1

+3a
n−2

, 

with a0 = 3 and a1=5? 

The characteristic equation for this recurrence is 0= r
2
−2r−3  = 

(r−3)(r+1), which has roots r1=3 and r2=−1. 

 Now we have a solution in the form an =  d13n+d2(−1)n, for  

Some d1 and d2. 

We can find the constants from the initial values we know: 

a0 = d13
0
+d2(−1)

0
 = d1+d2=3, 

a1 = d13
1
+d2(−1)

1
 =3d1−d2 = 5. 

 

Adding these equations, we get 4d1=8, so d1=2. And then from the 

first equation, we have d2=1. 

Finally, we have a solution: an= 2⋅3n
+(−1)

n
. 
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 We can calculate the first few terms, either with the recurrence or the 

solution: 3, 5, 19, 53, 163, 485. 

Check Your Progress 3 

1. What is Fibonnaci Series and state its properties 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

2. Explain the Generating function method 

_______________________________________________ 

 

_______________________________________________ 

 

_______________________________________________ 

 

7.8 LET’S SUM UP 

Generating function is used mostly to describe the infinite sequence of 

numbers. They are widely used to find a closed formula for sequence in 

recurrence relation, find relationship between sequences, solve Combinatory 

problems, proving identities involving sequence. 

7.9 KEYWORDS 

1. Expression :  is a finite combination of symbols that is well-formed 

according to rules that depend on the context. 

2. Quadratic Equation: is a second-order polynomial equation in a single 

variable 

3.Geometric series-  is a series with a constant ratio between successive 

terms. 
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4. Initial condition - in some contexts called a seed value, is a value of an 

evolving variable at some point in time designated as the initial time 

(typically denoted t = 0). 

 

7.10 QUESTION FOR REVIEW 
 

1.  Find the generating function for    the number of ways of distributing r 

similar balls into 7 numbered boxes where the second, third, fourth and fifth 

boxes are non-empty. 

2. Find the coefficient of     in              

3. Find a recurrence relation for    the number of different ways to 

distribute either a Rs. 1 bill, Rs. 2 bill, a Rs. 5 bill or Rs. 10 bill on a 

successive days until a total of n rupees has been distributed. 

4. Explain the analysis of the Mergesort Algorithm 

5. Solve                         by generating function. 
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7.12 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Explain the concept with example – 7.1 

2. Provide definition –7.1.1 

3. Explain the concept of Linear Recurrence Relation --- 7.3 

4. Explain the concept--- 7.3.1 

5. Explain the concept --- 7.5 & 7.5.1  

6. Explain the steps--- 7.7.2 

 

 

 

 


